262 resultados para cancer growth
Resumo:
Among the processes contributing to the progressive acquisition of the highly malignant phenotype in breast cancer are ovarian-independent growth, antioestrogen resistance and increased metastatic potential. We have previously observed that increased invasiveness and development of ovarian-independent growth occur independently. In an attempt to define the inter-relationships between these processes further, we have compared the phenotypes of ovarian-independent, invasive and antioestrogen-resistant sublines of the ovarian-dependent human breast cancer cell line MCF-7. Cells acquiring ovarian-independent growth can retain sensitivity to anti-oestrogens. One clone of MCF-7 cells selected for stable antioestrogen resistance has become non-tumorigenic but its invasive potential remains unaltered. Thus, acquisitions of some characteristics of the progressed phenotype can occur independently. This phenomenon of independent parameters in phenotypic progression could partly explain the considerable intra- and intertumour heterogeneity characteristic of breast tumours.
Resumo:
We have isolated a series of sublines of the hormone-dependent MCF-7 human breast cancer cell line after selection both in vivo and in vitro for growth in the presence of subphysiological concentrations of estrogens. These sublines represent a model system for study of the processes leading to hormonal autonomy. The cells form growing tumors in ovariectomized athymic nude mice in the absence of estrogen supplementation but retain some responsivity to estrogen as determined by stimulation of the rate of tumor growth in vivo and by induction of progesterone receptor. An ovarian-independent but hormone-responsive phenotype may occur early in the natural progression to hormone-independent and unresponsive growth in breast cancer. We observed no change in the affinity or decrease in the level of expression of estrogen receptors and progesterone receptors among the sublines and the parental cells. Epidermal growth factor receptors are not overexpressed in ovarian-independent cells. Thus, altered hormone receptor expression may be a late event in the acquisition of a hormone-independent and unresponsive phenotype. Sublines isolated by in vivo but not in vitro selection are more invasive than the parental cells both in vivo and across an artificial basement membrane in vitro. Thus, as yet unknown tumor-host interactions may be important in the development of an invasive phenotype. Furthermore, acquisition of the ovarian-independent and invasive phenotypes can occur independently.
Resumo:
Endogenous ovarian estrogens and progestins appear to play a critical role in the development and progression of breast cancer. Local productions of growth factors probably also contribute to malignant proliferation, while production and activation of collagenolytic enzymes may be equally critical for local invasive processes. The current review focusses on characterization of growth factor-receptor systems operant in normal and malignant breast epithelium. In addition, the determinants of local invasion are reviewed: attachment, modality, and proteose secretion. Finally, data are discussed concerning the regulation of both proliferation and invasion by hormones and antihormonal agents in hormone-dependent breast cancer. The results suggest new potential pharmacologic targets to explore to suppress onset and progression of breast cancer.
Resumo:
Background: Cancer metastasis is the main contributor to breast cancer fatalities as women with the metastatic disease have poorer survival outcomes than women with localised breast cancers. There is an urgent need to develop appropriate prognostic methods to stratify patients based on the propensities of their cancers to metastasise. The insulin-like growth factor (IGF)-I:IGF binding protein (IGFBP):vitronectin complexes have been shown to stimulate changes in gene expression favouring increased breast cancer cell survival and a migratory phenotype. We therefore investigated the prognostic potential of these IGF- and extracellular matrix (ECM) interaction-induced proteins in the early identification of breast cancers with a propensity to metastasise using patient-derived tissue microarrays. Methods: Semiquantitative immunohistochemistry analyses were performed to compare the extracellular and subcellular distribution of IGF- and ECM-induced signalling proteins among matched normal, primary cancer and metastatic cancer formalin-fixed paraffin-embedded breast tissue samples. Results: The IGF- and ECM-induced signalling proteins were differentially expressed between subcellular and extracellular localisations. Vitronectin and IGFBP-5 immunoreactivity was lower while β1 integrin immunoreactivity was higher in the stroma surrounding metastatic cancer tissues, as compared to normal breast and primary cancer stromal tissues. Similarly, immunoreactive stratifin was found to be increased in the stroma of primary as well as metastatic breast tissues. Immunoreactive fibronectin and β1 integrin was found to be highly expressed at the leading edge of tumours. Based on the immunoreactivity it was apparent that the cell signalling proteins AKT1 and ERK1/2 shuffled from the nucleus to the cytoplasm with tumour progression. Conclusion: This is the first in-depth, compartmentalised analysis of the distribution of IGF- and ECM-induced signalling proteins in metastatic breast cancers. This study has provided insights into the changing pattern of cellular localisation and expression of IGF- and ECM-induced signalling proteins in different stages of breast cancer. The differential distribution of these biomarkers could provide important prognostic and predictive indicators that may assist the clinical management of breast disease, namely in the early identification of cancers with a propensity to metastasise, and/or recur following adjuvant therapy.
Resumo:
Purpose Improved survival for men with prostate cancer has led to increased attention to factors influencing quality of life (QOL). As protein levels of vascular endothelial growth factor (VEGF) and insulin-like growth factor 1 (IGF-1) have been reported to be associated with QOL in people with cancer, we sought to identify whether single-nucleotide polymorphisms (SNPs) of these genes were associated with QOL in men with prostate cancer. Methods Multiple linear regression of two data sets (including approximately 750 men newly diagnosed with prostate cancer and 550 men from the general population) was used to investigate SNPs of VEGF and IGF-1 (10 SNPs in total) for associations with QOL (measured by the SF-36v2 health survey). Results Men with prostate cancer who carried the minor ‘T’ allele for IGF-1 SNP rs35767 had higher mean Role-Physical scale scores (≥0.3 SD) compared to non-carriers (p < 0.05). While this association was not identified in men from the general population, one IGF-1 SNP rs7965399 was associated with higher mean Bodily Pain scale scores in men from the general population that was not found in men with prostate cancer. Men from the general population who carried the rare ‘C’ allele had higher mean Bodily Pain scale scores (≥0.3 SD) than non-carriers (p < 0.05). Conclusions Through identifying SNPs that are associated with QOL in men with prostate cancer and men from the general population, this study adds to the mapping of complex interrelationships that influence QOL and suggests a role for IGF-I in physical QOL outcomes. Future research may identify biomarkers associated with increased risk of poor QOL that could assist in the provision of pre-emptive support for those identified at risk.
Resumo:
Background The VEGF pathway has become an important therapeutic target in lung cancer, where VEGF has long been established as a potent pro-angiogenic growth factor expressed by many types of tumors. While Bevacizumab (Avastin) has proven successful in increasing the objective tumor response rate and in prolonging progression and overall survival in patients with NSCLC, the survival benefit is however relatively short and the majority of patients eventually relapse. The current use of tyrosine kinase inhibitors alone and in combination with chemotherapy has been underwhelming, highlighting an urgent need for new targeted therapies. In this study, we examined the mechanisms of VEGF-mediated survival in NSCLC cells and the role of the Neuropilin receptors in this process. Methods NSCLC cells were screened for expression of VEGF and its receptors. The effects of recombinant VEGF and its blockade on lung tumor cell proliferation and cell cycle were examined. Phosphorylation of Akt and Erk1/2 proteins was examined by high content analysis and confocal microscopy. The effects of silencing VEGF on cell proliferation and survival signaling were also assessed. A Neuropilin-1 stable-transfected cell line was generated. Cell growth characteristics in addition to pAkt and pErk1/2 signaling were studied in response to VEGF and its blockade. Tumor growth studies were carried out in nude mice following subcutaneous injection of NP1 over-expressing cells. Results Inhibition of the VEGF pathway with anti-VEGF and anti-VEGFR-2 antibodies or siRNA to VEGF, NP1 and NP2 resulted in growth inhibition of NP1 positive tumor cell lines associated with down-regulation of PI3K and MAPK kinase signaling. Stable transfection of NP1 negative cells with NP1 induced proliferation in vitro, which was further enhanced by exogenous VEGF. In vivo, NP1 over-expressing cells significantly increased tumor growth in xenografts compared to controls. Conclusions Our data demonstrate that VEGF is an autocrine growth factor in NSCLC signaling, at least in part, through NP1. Targeting this VEGF receptor may offer potential as a novel therapeutic approach and also support the evaluation of the role of NP1 as a biomarker predicting sensitivity or resistance to VEGF and VEGFR-targeted therapies in the clinical arena.
Resumo:
This project was a step forward in discovering the potential role of intestinal cell kinase in prostate cancer development. Intestinal cell kinase was shown to be upregulated in prostate cancer cells and altered expression led to changes in key cell survival proteins. This study used in vitro experiments to monitor changes in cell growth, protein and RNA expression.
Resumo:
As part of an anti-cancer natural product drug discovery program, we recently identified eusynstyelamide B (EB), which displayed cytotoxicity against MDA-MB-231 breast cancer cells (IC50 = 5 μM) and induced apoptosis. Here, we investigated the mechanism of action of EB in cancer cell lines of the prostate (LNCaP) and breast (MDA-MB-231). EB inhibited cell growth (IC50 = 5 μM) and induced a G2 cell cycle arrest, as shown by a significant increase in the G2/M cell population in the absence of elevated levels of the mitotic marker phospho-histone H3. In contrast to MDA-MB-231 cells, EB did not induce cell death in LNCaP cells when treated for up to 10 days. Transcript profiling and Ingenuity Pathway Analysis suggested that EB activated DNA damage pathways in LNCaP cells. Consistent with this, CHK2 phosphorylation was increased, p21CIP1/WAF1 was up-regulated and CDC2 expression strongly reduced by EB. Importantly, EB caused DNA double-strand breaks, yet did not directly interact with DNA. Analysis of topoisomerase II-mediated decatenation discovered that EB is a novel topoisomerase II poison.
Resumo:
Introduction Metastatic spread to the brain is common in patients with non–small cell lung cancer (NSCLC), but these patients are generally excluded from prospective clinical trials. The studies, phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations (LUX-Lung 3) and a randomized, open-label, phase III study of BIBW 2992 versus chemotherapy as first-line treatment for patients with stage IIIB or IV adenocarcinoma of the lung harbouring an EGFR activating mutation (LUX-Lung 6) investigated first-line afatinib versus platinum-based chemotherapy in epidermal growth factor receptor gene (EGFR) mutation-positive patients with NSCLC and included patients with brain metastases; prespecified subgroup analyses are assessed in this article. Methods For both LUX-Lung 3 and LUX-Lung 6, prespecified subgroup analyses of progression-free survival (PFS), overall survival, and objective response rate were undertaken in patients with asymptomatic brain metastases at baseline (n = 35 and n = 46, respectively). Post hoc analyses of clinical outcomes was undertaken in the combined data set (n = 81). Results In both studies, there was a trend toward improved PFS with afatinib versus chemotherapy in patients with brain metastases (LUX-Lung 3: 11.1 versus 5.4 months, hazard ratio [HR] = 0.54, p = 0.1378; LUX-Lung 6: 8.2 versus 4.7 months, HR = 0.47, p = 0.1060). The magnitude of PFS improvement with afatinib was similar to that observed in patients without brain metastases. In combined analysis, PFS was significantly improved with afatinib versus with chemotherapy in patients with brain metastases (8.2 versus 5.4 months; HR, 0.50; p = 0.0297). Afatinib significantly improved the objective response rate versus chemotherapy in patients with brain metastases. Safety findings were consistent with previous reports. Conclusions These findings lend support to the clinical activity of afatinib in EGFR mutation–positive patients with NSCLC and asymptomatic brain metastases.
Resumo:
Fibroblast growth factors (FGFs) regulate a plethora of biological functions, in both the embryonic and adult stages of development, binding their cognate receptors and thus activating a variety of downstream signalling pathways. Deregulation of the FGF/FGFR signalling axis, observed in multifarious tumor types including squamous non-small cell lung cancer, occurs through genomic FGFR alterations that drive ligand-independent receptor signalling or alterations that support ligand-dependent activation. Mutations are not restricted to the tyrosine kinase domain and aberrations appear to be tumor type dependent. As well as its complementarity and synergy with VEGF of particular interest is the interplay between FGFR and EGFR and the ability of these pathways to offer a compensatory signalling escape mechanism when either is inhibited. Hence there exists a rationale for a combinatorial approach to inhibition of these dysregulated pathways to reverse drug resistance. To date, several multi-target tyrosine kinase inhibitors as well as FGFR specific tyrosine kinase inhibitors (TKIs), monoclonal antibodies and FGF ligand traps have been developed. Promising preclinical data has resulted in several drugs entering clinical trials. This review explores aberrant FGFR and its potential as a therapeutic target in solid tumors.
Resumo:
The insulin‑like growth factor 1 receptor (IGF1R) pathway plays an important role in the pathogenesis of non‑small cell lung cancer (NSCLC) and also provides a mechanism of resistance to targeted therapies. IGF1R is therefore an ideal therapeutic target and several inhibitors have entered clinical trials. However, thus far the response to these inhibitors has been poor, highlighting the importance of predictive biomarkers to identify patient cohorts who will benefit from these targeted agents. It is well‑documented that mutations and/or deletions in the epidermal growth factor receptor (EGFR) tyrosine kinase (TK) domain predict sensitivity of NSCLC patients to EGFR TK inhibitors. Single‑nucleotide polymorphisms (SNPs) in the IGF pathway have been associated with disease, including breast and prostate cancer. The aim of the present study was to elucidate whether the IGF1R TK domain harbours SNPs, somatic mutations or deletions in NSCLC patients and correlates the mutation status to patient clinicopathological data and prognosis. Initially 100 NSCLC patients were screened for mutations/deletions in the IGF1R TK domain (exons 16‑21) by sequencing analysis. Following the identification of SNP rs2229765, a further 98 NSCLC patients and 866 healthy disease‑free control patients were genotyped using an SNP assay. The synonymous SNP (rs2229765) was the only aberrant base change identified in the IGF1R TK domain of 100 NSCLC patients initially analysed. SNP rs2229765 was detected in exon 16 and was found to have no significant association between IGF1R expression and survival. The GA genotype was identified in 53.5 and 49.4% of NSCLC patients and control individuals, respectively. No significant difference was found in the genotype (P=0.5487) or allele (P=0.9082) frequencies between the case and control group. The present findings indicate that in contrast to the EGFR TK domain, the IGF1R TK domain is not frequently mutated in NSCLC patients. The synonymous SNP (rs2229765) had no significant association between IGF1R expression and survival in the cohort of NSCLC patients.
Resumo:
Technology platforms originally developed for tissue engineering applications produce valuable models that mimic three-dimensional (3D) tissue organization and function to enhance the understanding of cell/tissue function under normal and pathological situations. These models show that when replicating physiological and pathological conditions as closely as possible investigators are allowed to probe the basic mechanisms of morphogenesis, differentiation and cancer. Significant efforts investigating angiogenetic processes and factors in tumorigenesis are currently undertaken to establish ways of targeting angiogenesis in tumours. Anti-angiogenic agents have been accepted for clinical application as attractive targeted therapeutics for the treatment of cancer. Combining the areas of tumour angiogenesis, combination therapies and drug delivery systems is therefore closely related to the understanding of the basic principles that are applied in tissue engineering models. Studies with 3D model systems have repeatedly identified complex interacting roles of matrix stiffness and composition, integrins, growth factor receptors and signalling in development and cancer. These insights suggest that plasticity, regulation and suppression of these processes can provide strategies and therapeutic targets for future cancer therapies. The historical perspective of the fields of tissue engineering and controlled release of therapeutics, including inhibitors of angiogenesis in tumours is becoming clearly evident as a major future advance in merging these fields. New delivery systems are expected to greatly enhance the ability to deliver drugs locally and in therapeutic concentrations to relevant sites in living organisms. Investigating the phenomena of angiogenesis and anti-angiogenesis in 3D in vivo models such as the Arterio-Venous (AV) loop mode in a separated and isolated chamber within a living organism adds another significant horizon to this perspective and opens new modalities for translational research in this field.
Resumo:
Although systemic androgen deprivation prolongs life in advanced prostate cancer, remissions are temporary because patients almost uniformly progress to a state of a castration-resistant prostate cancer (CRPC) as indicated by recurring PSA. This complex process of progression does not seem to be stochastic as the timing and phenotype are highly predictable, including the observation that most androgen-regulated genes are reactivated despite castrate levels of serum androgens. Recent evidence indicates that intraprostatic levels of androgens remain moderately high following systemic androgen deprivation therapy, whereas the androgen receptor (AR) remains functional, and silencing the AR expression following castration suppresses tumor growth and blocks the expression of genes known to be regulated by androgens. From these observations, we hypothesized that CRPC progression is not independent of androgen-driven activity and that androgens may be synthesized de novo in CRPC tumors leading to AR activation. Using the LNCaP xenograft model, we showed that tumor androgens increase during CRPC progression in correlation to PSA up-regulation. We show here that all enzymes necessary for androgen synthesis are expressed in prostate cancer tumors and some seem to be up-regulated during CRPC progression. Using an ex vivo radiotracing assays coupled to high-performance liquid chromatography-radiometric/mass spectrometry detection, we show that tumor explants isolated from CRPC progression are capable of de novo conversion of [(14)C]acetic acid to dihydrotestosterone and uptake of [(3)H]progesterone allows detection of the production of six other steroids upstream of dihydrotestosterone. This evidence suggests that de novo androgen synthesis may be a driving mechanism leading to CRPC progression following castration.
Resumo:
Cell proliferation is a critical and frequently studied feature of molecular biology in cancer research. Therefore, various assays are available using different strategies to measure cell proliferation. Metabolic assays such as AlamarBlue, WST-1, and MTT, which were originally developed to determine cell toxicity, are being used to assess cell numbers. Additionally, proliferative activity can be determined by quantification of DNA content using fluorophores, such as CyQuant and PicoGreen. Referring to data published in high ranking cancer journals, 945 publications applied these assays over the past 14 years to examine the proliferative behaviour of diverse cell types. Within this study, mainly metabolic assays were used to quantify changes in cell growth yet these assays may not accurately reflect cellular proliferation rates due to a miscorrelation of metabolic activity and cell number. Testing this hypothesis, we compared metabolic activity of different cell types, human cancer cells and primary cells, over a time period of 4 days using AlamarBlue and fluorometric assays CyQuant and PicoGreen to determine their DNA content. Our results show certain discrepancies in terms of over-estimation of cell proliferation with respect to the metabolic assay in comparison to DNA binding fluorophores.