422 resultados para brain modeling
Resumo:
The track allocation problem (TAP) at a multi-track, multi-platform mainline railway station is defined by the station track layout and service timetable, which implies combinations of spatial and temporal conflicts. Feasible solutions are available from either traditional planning or advanced intelligent searching methods and their evaluations with respect to operational requirements are essential for the operators. To facilitate thorough analysis, a timed Coloured Petri Nets (CPN) model is presented here to encapsulate the inter-relationships of the spatial and temporal constraints in the TAP.
Resumo:
A novel model for the potentiostatic discharge of primary alkaline battery cathodes is presented. The model is used to simulate discharges resulting from the stepped potential electrochemical spectroscopy (SPECS) of primary alkaline battery cathodes cathodes, and the results are validated with experimental data. We show that a model based on a single (or mean) reaction framework can be used to simulate multi-reaction discharge behaviour and we develop a consistent functional modification to the kinetic equation of the model that allows for this to occur. The model is used to investigate the effects that the initial exchange current density, i00, and the diffusion coefficient for protons in electrolytic manganese dioxide (EMD), DH+, have on SPECS discharge. The behaviour observed is consistent with the idea that individual reduction reactions, within the multi-reaction, reduction behaviour of EMD, have distinct i00 and DH+ values.
Resumo:
The quality and bitrate modeling is essential to effectively adapt the bitrate and quality of videos when delivered to multiplatform devices over resource constraint heterogeneous networks. The recent model proposed by Wang et al. estimates the bitrate and quality of videos in terms of the frame rate and quantization parameter. However, to build an effective video adaptation framework, it is crucial to incorporate the spatial resolution in the analytical model for bitrate and perceptual quality adaptation. Hence, this paper proposes an analytical model to estimate the bitrate of videos in terms of quantization parameter, frame rate, and spatial resolution. The model can fit the measured data accurately which is evident from the high Pearson correlation. The proposed model is based on the observation that the relative reduction in bitrate due to decreasing spatial resolution is independent of the quantization parameter and frame rate. This modeling can be used for rate-constrained bit-stream adaptation scheme which selects the scalability parameters to optimize the perceptual quality for a given bandwidth constraint.
Resumo:
Goals: Few studies have repeatedly evaluated quality of life and potentially relevant factors in patients with benign primary brain tumor. The purpose of this study was to explore the relationship between the experience of the symptom distress, functional status, depression, and quality of life prior to surgery (T1) and 1 month post-discharge (T2). ---------- Patients and methods: This was a prospective cohort study including 58 patients with benign primary brain tumor in one teaching hospital in the Taipei area of Taiwan. The research instruments included the M.D. Anderson Symptom Inventory, the Functional Independence Measure scale, the Hospital Depression Scale, and the Functional Assessment of Cancer Therapy-Brain.---------- Results: Symptom distress (T1: r=−0.90, p<0.01; T2: r=−0.52, p<0.01), functional status (T1: r=0.56, p<0.01), and depression (T1: r=−0.71, p<0.01) demonstrated a significant relationship with patients' quality of life. Multivariate analysis identified symptom distress (explained 80.2%, Rinc 2=0.802, p=0.001) and depression (explained 5.2%, Rinc 2=0.052, p<0.001) continued to have a significant independent influence on quality of life prior to surgery (T1) after controlling for key demographic and medical variables. Furthermore, only symptom distress (explained 27.1%, Rinc 2=0.271, p=0.001) continued to have a significant independent influence on quality of life at 1 month after discharge (T2).---------- Conclusions: The study highlights the potential importance of a patient's symptom distress on quality of life prior to and following surgery. Health professionals should inquire about symptom distress over time. Specific interventions for symptoms may improve the symptom impact on quality of life. Additional studies should evaluate symptom distress on longer-term quality of life of patients with benign brain tumor.
Resumo:
Conceptual modeling grammars are a fundamental means for specifying information systems requirements. However, the actual usage of these grammars is only poorly understood. In particular, little is known about how properties of these grammars inform usage beliefs such as usefulness and ease of use. In this paper we use an ontological theory to describe conceptual modeling grammars in terms of their ontological deficiencies, and formulate two propositions in regard to how these ontological deficiencies influence primary usage beliefs. Using BPMN as an example modeling grammar, we surveyed 528 modeling practitioners to test the theorized relationships. Our results show that users of conceptual modeling grammars perceive ontological deficiencies to exist, and that these deficiency perceptions are negatively associated with usefulness and ease of use of these grammars. With our research we provide empirical evidence in support of the predictions of the ontological theory of modeling grammar expressiveness, and we identify previously unexplored links between conceptual modeling grammars and grammar usage beliefs. This work implies for practice a much closer coupling of the act of (re ) designing modeling grammars with usage-related success metrics.
Resumo:
Business processes have emerged as a well-respected variable in the design of successful corporations. However, unlike other key managerial variables, such as products and services, customers and employees, physical or digital assets, the conceptualization and management of business processes are in many respects in their infancy. In this book, Jan Recker investigates the notion of quality of business process modeling grammars. His evaluation is based on an ontological-, qualitative-, and quantitative analysis, applied to BPMN, a widely-used business process modeling grammar. His results reveal the ontological shortcomings of BPMN and how these manifest themselves in actual process modeling practice, as well as how they influence the usage behavior of modeling practitioners. More generally, his book constitutes a landmark for empirical technology assessment, analyzing the way in which design flaws in technology influence usage behavior.
Resumo:
Process modeling is an emergent area of Information Systems research that is characterized through an abundance of conceptual work with little empirical research. To fill this gap, this paper reports on the development and validation of an instrument to measure user acceptance of process modeling grammars. We advance an extended model for a multi-stage measurement instrument development procedure, which incorporates feedback from both expert and user panels. We identify two main contributions: First, we provide a validated measurement instrument for the study of user acceptance of process modeling grammars, which can be used to assist in further empirical studies that investigate phenomena associated with the business process modeling domain. Second, in doing so, we describe in detail a procedural model for developing measurement instruments that ensures high levels of reliability and validity, which may assist fellow scholars in executing their empirical research.
Resumo:
This study investigated personal and social processes of adjustment at different stages of illness for individuals with brain tumour. A purposive sample of 18 participants with mixed tumour types (9 benign and 9 malignant) and 15 family caregivers was recruited from a neurosurgical practice and a brain tumour support service. In-depth semi-structured interviews focused on participants’ perceptions of their adjustment, including personal appraisals, coping and social support since their brain tumour diagnosis. Interview transcripts were analysed thematically using open, axial and selective coding techniques. The primary theme that emerged from the analysis entailed “key sense making appraisals”, which was closely related to the following secondary themes: (1) Interactions with those in the healthcare system, (2) reactions and support from the personal support network, and (3) a diversity of coping efforts. Adjustment to brain tumour involved a series of appraisals about the illness that were influenced by interactions with those in the healthcare system, reactions and support from people in their support network, and personal coping efforts. Overall, the findings indicate that adjustment to brain tumour is highly individualistic; however, some common personal and social processes are evident in how people make sense of and adapt to the illness over time. A preliminary framework of adjustment based on the present findings and its clinical relevance are discussed. In particular, it is important for health professionals to seek to understand and support individuals’ sense-making processes following diagnosis of brain tumour.
Resumo:
Objective: To assess the efficacy of bilateral pedunculopontine nucleus (PPN) deep brain stimulation (DBS) as a treatment for primary progressive freezing of gait (PPFG). ------ ----- Methods: A patient with PPFG underwent bilateral PPN-DBS and was followed clinically for over 14 months. ------ ----- Results: The PPFG patient exhibited a robust improvement in gait and posture following PPN-DBS. When PPN stimulation was deactivated, postural stability and gait skills declined to pre-DBS levels, and fluoro-2-deoxy-d-glucose positron emission tomography revealed hypoactive cerebellar and brainstem regions, which significantly normalised when PPN stimulation was reactivated. ------ ----- Conclusions: This case demonstrates that the advantages of PPN-DBS may not be limited to addressing freezing of gait (FOG) in idiopathic Parkinson's disease. The PPN may also be an effective DBS target to address other forms of central gait failure.
Resumo:
Planning on utilization of train-set is one of the key tasks of transport organization for passenger dedicated railway in China. It also has strong relationships with timetable scheduling and operation plans at a station. To execute such a task in a railway hub pooling multiple railway lines, the characteristics of multiple routing for train-set is discussed in term of semicircle of train-sets' turnover. In programming the described problem, the minimum dwell time is selected as the objectives with special derive constraints of the train-set's dispatch, the connecting conditions, the principle of uniqueness for train-sets, and the first plus for connection in the same direction based on time tolerance σ. A compact connection algorithm based on time tolerance is then designed. The feasibility of the model and the algorithm is proved by the case study. The result indicates that the circulation model and algorithm about multiple routing can deal with the connections between the train-sets of multiple directions, and reduce the train's pulling in or leaving impact on the station's throat.
Resumo:
Magneto-rheological (MR) fluid damper is a semi-active control device that has recently received more attention by the vibration control community. But inherent nonlinear hysteresis character of magneto-rheological fluid dampers is one of the challenging aspects for utilizing this device to achieve high system performance. So the development of accurate model is necessary to take the advantage their unique characteristics. Research by others [3] has shown that a system of nonlinear differential equations can successfully be used to describe the hysteresis behavior of the MR damper. The focus of this paper is to develop an alternative method for modeling a damper in the form of centre average fuzzy interference system, where back propagation learning rules are used to adjust the weight of network. The inputs for the model are used from the experimental data. The resulting fuzzy interference system is satisfactorily represents the behavior of the MR fluid damper with reduced computational requirements. Use of the neuro-fuzzy model increases the feasibility of real time simulation.
Resumo:
Understanding the motion characteristics of on-site objects is desirable for the analysis of construction work zones, especially in problems related to safety and productivity studies. This article presents a methodology for rapid object identification and tracking. The proposed methodology contains algorithms for spatial modeling and image matching. A high-frame-rate range sensor was utilized for spatial data acquisition. The experimental results indicated that an occupancy grid spatial modeling algorithm could quickly build a suitable work zone model from the acquired data. The results also showed that an image matching algorithm is able to find the most similar object from a model database and from spatial models obtained from previous scans. It is then possible to use the matched information to successfully identify and track objects.
Resumo:
Object identification and tracking have become critical for automated on-site construction safety assessment. The primary objective of this paper is to present the development of a testbed to analyze the impact of object identification and tracking errors caused by data collection devices and algorithms used for safety assessment. The testbed models workspaces for earthmoving operations and simulates safety-related violations, including speed limit violations, access violations to dangerous areas, and close proximity violations between heavy machinery. Three different cases were analyzed based on actual earthmoving operations conducted at a limestone quarry. Using the testbed, the impacts of device and algorithm errors were investigated for safety planning purposes.
Resumo:
Purpose Process modeling is a complex organizational task that requires many iterations and communication between the business analysts and the domain specialists. The challenge of process modeling is exacerbated, when the process of modeling has to be performed in a cross-organizational, distributed environment. In this paper we suggest a 3D environment for collaborative process modeling, using Virtual World technology. Design/methodology/approach We suggest a new collaborative process modeling approach based on Virtual World technology. We describe the design of an innovative prototype collaborative process modeling approach, implemented as a 3D BPMN modeling environment in Second Life. We use a case study to evaluate the suggested approach. Findings Based on our case study application, we show that our approach increases user empowerment and adds significantly to the collaboration and consensual development of process models even when the relevant stakeholders are geographically dispersed. Research limitations implications – We present design work and a case study. More research is needed to more thoroughly evaluate the presented approach in a variety of real-life process modeling settings. Practical implications Our research outcomes as design artifacts are directly available and applicable by business process management professionals and can be used by business, system and process analysts in real-world practice. Originality/value Our research is the first reported attempt to develop a process modeling approach on the basis of virtual world technology. We describe a novel and innovative 3D BPMN modeling environment in Second Life.
Comparison of standard image segmentation methods for segmentation of brain tumors from 2D MR images
Resumo:
In the analysis of medical images for computer-aided diagnosis and therapy, segmentation is often required as a preliminary step. Medical image segmentation is a complex and challenging task due to the complex nature of the images. The brain has a particularly complicated structure and its precise segmentation is very important for detecting tumors, edema, and necrotic tissues in order to prescribe appropriate therapy. Magnetic Resonance Imaging is an important diagnostic imaging technique utilized for early detection of abnormal changes in tissues and organs. It possesses good contrast resolution for different tissues and is, thus, preferred over Computerized Tomography for brain study. Therefore, the majority of research in medical image segmentation concerns MR images. As the core juncture of this research a set of MR images have been segmented using standard image segmentation techniques to isolate a brain tumor from the other regions of the brain. Subsequently the resultant images from the different segmentation techniques were compared with each other and analyzed by professional radiologists to find the segmentation technique which is the most accurate. Experimental results show that the Otsu’s thresholding method is the most suitable image segmentation method to segment a brain tumor from a Magnetic Resonance Image.