479 resultados para VARIANCE
Resumo:
This study examined the psychometric properties of an expanded version of the Algase Wandering Scale (Version 2) (AWS-V2) in a cross-cultural sample. A cross-sectional survey design was used. Study subjects were 172 English-speaking persons with dementia (PWD) from long-term care facilities in the USA, Canada, and Australia. Two or more facility staff rated each subject on the AWS-V2. Demographic and cognitive data (MMSE) were also obtained. Staff provided information on their own knowledge of the subject and of dementia. Separate factor analyses on data from two samples of raters each explained greater than 66% of the variance in AWS-V2 scores and validated four (persistent walking, navigational deficit, eloping behavior, and shadowing) of five factors in the original scale. Items added to create the AWS-V2 strengthened the shadowing subscale, failed to improve the routinized walking subscale, and added a factor, attention shifting as compared to the original AWS. Evidence for validity was found in significant correlations and ANOVAs between the AWS-V2 and most subscales with a single item indicator of wandering and with the MMSE. Evidence of reliability was shown by internal consistency of the AWS-V2 (0.87, 0.88) and its subscales (range 0.88 to 0.66), with Kappa for individual items (17 of 27 greater than 0.4), and ANOVAs comparing ratings across rater groups (nurses, nurse aids, and other staff). Analyses support validity and reliability of the AWS-V2 overall and for persistent walking, spatial disorientation, and eloping behavior subscales. The AWS-V2 and its subscales are an appropriate way to measure wandering as conceptualized within the Need-driven Dementia-compromised Behavior Model in studies of English-speaking subjects. Suggestions for further strengthening the scale and for extending its use to clinical applications are described.
Resumo:
This study evaluates three versions of the Wayfinding Effectiveness Scale (WES), developed to differentiate problems of wayfinding and wandering behavior of community-residing elders with dementia (EWD), in 266 dyads (EWD and caregiver) recruited from Alzheimer's Association chapters. Factor analyses yield a five-factor solution (explained variance = 62.6%): complex wayfinding goals, analytic strategies, global strategies, simple wayfinding goals, and being stimulus bound. Overall, internal consistencies are high: WES (.94-.95), and subscales are stable across all versions. Testretest reliability is acceptable for the overall WES and two subscales (complex and simple wayfinding goals) for the care recipient current behavior version. Construct validity is supported by the pattern of correlations among subscales and analyses of variance (ANOVAs) showing significant differences among the care recipient (current vs. prior behavior) and caregiver versions overall and for all subscales. Results support the WES as a valid and reliable measure of wayfinding effectiveness in persons with dementia.
Resumo:
Most statistical methods use hypothesis testing. Analysis of variance, regression, discrete choice models, contingency tables, and other analysis methods commonly used in transportation research share hypothesis testing as the means of making inferences about the population of interest. Despite the fact that hypothesis testing has been a cornerstone of empirical research for many years, various aspects of hypothesis tests commonly are incorrectly applied, misinterpreted, and ignored—by novices and expert researchers alike. On initial glance, hypothesis testing appears straightforward: develop the null and alternative hypotheses, compute the test statistic to compare to a standard distribution, estimate the probability of rejecting the null hypothesis, and then make claims about the importance of the finding. This is an oversimplification of the process of hypothesis testing. Hypothesis testing as applied in empirical research is examined here. The reader is assumed to have a basic knowledge of the role of hypothesis testing in various statistical methods. Through the use of an example, the mechanics of hypothesis testing is first reviewed. Then, five precautions surrounding the use and interpretation of hypothesis tests are developed; examples of each are provided to demonstrate how errors are made, and solutions are identified so similar errors can be avoided. Remedies are provided for common errors, and conclusions are drawn on how to use the results of this paper to improve the conduct of empirical research in transportation.
Resumo:
Statistical modeling of traffic crashes has been of interest to researchers for decades. Over the most recent decade many crash models have accounted for extra-variation in crash counts—variation over and above that accounted for by the Poisson density. The extra-variation – or dispersion – is theorized to capture unaccounted for variation in crashes across sites. The majority of studies have assumed fixed dispersion parameters in over-dispersed crash models—tantamount to assuming that unaccounted for variation is proportional to the expected crash count. Miaou and Lord [Miaou, S.P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: dispersion parameter, functional form, and Bayes versus empirical Bayes methods. Transport. Res. Rec. 1840, 31–40] challenged the fixed dispersion parameter assumption, and examined various dispersion parameter relationships when modeling urban signalized intersection accidents in Toronto. They suggested that further work is needed to determine the appropriateness of the findings for rural as well as other intersection types, to corroborate their findings, and to explore alternative dispersion functions. This study builds upon the work of Miaou and Lord, with exploration of additional dispersion functions, the use of an independent data set, and presents an opportunity to corroborate their findings. Data from Georgia are used in this study. A Bayesian modeling approach with non-informative priors is adopted, using sampling-based estimation via Markov Chain Monte Carlo (MCMC) and the Gibbs sampler. A total of eight model specifications were developed; four of them employed traffic flows as explanatory factors in mean structure while the remainder of them included geometric factors in addition to major and minor road traffic flows. The models were compared and contrasted using the significance of coefficients, standard deviance, chi-square goodness-of-fit, and deviance information criteria (DIC) statistics. The findings indicate that the modeling of the dispersion parameter, which essentially explains the extra-variance structure, depends greatly on how the mean structure is modeled. In the presence of a well-defined mean function, the extra-variance structure generally becomes insignificant, i.e. the variance structure is a simple function of the mean. It appears that extra-variation is a function of covariates when the mean structure (expected crash count) is poorly specified and suffers from omitted variables. In contrast, when sufficient explanatory variables are used to model the mean (expected crash count), extra-Poisson variation is not significantly related to these variables. If these results are generalizable, they suggest that model specification may be improved by testing extra-variation functions for significance. They also suggest that known influences of expected crash counts are likely to be different than factors that might help to explain unaccounted for variation in crashes across sites
Resumo:
Aim: This paper is a report of a study conducted to determine the effectiveness of a community case management collaborative education intervention in terms of satisfaction, learning and performance among public health nurses. Background: Previous evaluation studies of case management continuing professional education often failed to demonstrate effectiveness across a range of outcomes and had methodological weaknesses such as small convenience samples and lack of control groups. Method: A cluster randomised controlled trial was conducted between September 2005 and February 2006. Ten health centre clusters (5 control, 5 intervention) recruited 163 public health nurses in Taiwan to the trial. After pre-tests for baseline measurements, public health nurses in intervention centres received an educational intervention of four half-day workshops. Post-tests for both groups were conducted after the intervention. Two-way repeated measures analysis of variance was performed to evaluate the effect of the intervention on target outcomes. Results: A total of 161 participants completed the pre- and post-intervention measurements. This was almost a 99% response rate. Results revealed that 97% of those in the experimental group were satisfied with the programme. There were statistically significant differences between the two groups in knowledge (p = 0.001), confidence in case management skills (p = 0.001), preparedness for case manager role activities (p = 0.001), self-reported frequency in using skills (p = 0.001), and role activities (p = 0.004). Conclusion: Collaboration between academic and clinical nurses is an effective strategy to prepare nurses for rapidly-changing roles.
Resumo:
Cloninger’s psychobiological model of temperament and character is a general model of personality that has been widely used in clinical psychology, but has seldom been applied in other domains. In this research we apply Cloninger’s model to the study of leadership. Our study comprised 81 participants who took part in a diverse range of small group tasks. Participants rotated through tasks and groups and rated each other on “emergent leadership.” As hypothesized, leader emergence tended to be consistent regardless of the specific tasks and groups. It was found that personality factors from Cloninger, Svrakic, and Przybeck’s (1993) model could explain trait-based variance in emergent leadership. Results also highlight the role of “cooperativeness” in the prediction of leadership emergence. Implications are discussed in terms of our theoretical understanding of trait-based leadership, and more generally in terms of the utility of Cloninger’s model in leadership research.
Resumo:
Purpose: To undertake rigorous psychometric testing of the newly developed contemporary work environment measure (the Brisbane Practice Environment Measure [B-PEM]) using exploratory factor analysis and confirmatory factor analysis. Methods: Content validity of the 33-item measure was established by a panel of experts. Initial testing involved 195 nursing staff using principal component factor analysis with varimax rotation (orthogonal) and Cronbach's alpha coefficients. Confirmatory factor analysis was conducted using data from a further 983 nursing staff. Results: Principal component factor analysis yielded a four-factor solution with eigenvalues greater than 1 that explained 52.53% of the variance. These factors were then verified using confirmatory factor analysis. Goodness-of-fit indices showed an acceptable fit overall with the full model, explaining 21% to 73% of the variance. Deletion of items took place throughout the evolution of the instrument, resulting in a 26-item, four-factor measure called the Brisbane Practice Environment Measure-Tested. Conclusions: The B-PEM has undergone rigorous psychometric testing, providing evidence of internal consistency and goodness-of-fit indices within acceptable ranges. The measure can be utilised as a subscale or total score reflective of a contemporary nursing work environment. Clinical Relevance: An up-to-date instrument to measure practice environment may be useful for nursing leaders to monitor the workplace and to assist in identifying areas for improvement, facilitating greater job satisfaction and retention.
Resumo:
Study Design: Case Study Series.---------- Introduction: Restriction of forearm rotation may be required for effective management and rehabilitation of the upper limb after trauma.---------- Purpose of the Study: To compare the effectiveness of four splints in restricting forearm rotation.---------- Methods: Muenster, Sugartong, antipronation distal radioulnar joint (DRUJ), and standard wrist splints were fabricated for five healthy participants. Active range of motion (AROM) in forearm pronation and supination was measured with a goniometer for each splint, at the initial point of sensory feedback and during exertion of maximal force.---------- Results: Repeated-measures analysis of variance indicated significant differences between splints for all four AROM measures. Post hoc paired t-tests showed that the Sugartong splint was significantly more restrictive in pronation than the Muenster splint. The antipronation DRUJ splint provided significantly greater restriction in pronation than the standard wrist splint. No splints immobilized the forearm completely.---------- Conclusions: The Sugartong splint is recommended for maximal restriction in pronation, but individual patient characteristics require consideration in splint choice.
Resumo:
The problem of delays in the construction industry is a global phenomenon and the construction industry in Brunei Darussalam is no exception. The goal of all parties involved in construction projects – owners, contractors, engineers and consultants in either the public or private sector is to successfully complete the project on schedule, within planned budget, with the highest quality and in the safest manner. Construction projects are frequently influenced by either success factors that help project parties reach their goal as planned, or delay factors that stifle or postpone project completion. The purpose of this research is to identify success and delay factors which can help project parties reach their intended goals with greater efficiency. This research extracted seven of the most important success factors according to the literature and seven of the most important delay factors identified by project parties, and then examined correlations between them to determine which were the most influential in preventing project delays. This research uses a comprehensive literature review to design and conduct a survey to investigate success and delay factors and then obtain a consensus of expert opinion using the Delphi methodology to rank the most needed critical success factors for Brunei construction projects. A specific survey was distributed to owners, contractors and engineers to examine the most critical delay factors. A general survey was distributed to examine the correlation between the identified delay factors and the seven most important critical success factors selected. A consensus of expert opinion using the Delphi methodology was used to rank the most needed critical success factors for Brunei building construction. Data was collected and evaluated by statistical methods to identify the most significant causes of delay and to measure the strength and direction of the relationship between critical success factors and delay factors in order to examine project parties’ evaluation of projects’ critical success and delay factors, and to evaluate the influence of critical success factors on critical delay factors. A relative importance index has been used to determine the relative importance of the various causes of delays. A one and two-way analysis of variance (ANOVA) has been used to examine how the group or groups evaluated the influence of the critical success factors in avoiding or preventing each of the delay factors, and which success factors were perceived as most influential in avoiding or preventing critical delay factors. Finally the Delphi method, using consensus from an expert panel, was employed to identify the seven most critical success factors used to avoid the delay factors, and thereby improve project performance.
Resumo:
Hazard perception in driving is the one of the few driving-specific skills associated with crash involvement. However, this relationship has only been examined in studies where the majority of individuals were younger than 65. We present the first data revealing an association between hazard perception and self-reported crash involvement in drivers aged 65 and over. In a sample of 271 drivers, we found that individuals whose mean response time to traffic hazards was slower than 6.68 seconds (the ROC-curve derived pass mark for the test) were 2.32 times (95% CI 1.46, 3.22) more likely to have been involved in a self-reported crash within the previous five years than those with faster response times. This likelihood ratio became 2.37 (95% CI 1.49, 3.28) when driving exposure was controlled for. As a comparison, individuals who failed a test of useful field of view were 2.70 (95% CI 1.44, 4.44) times more likely to crash than those who passed. The hazard perception test and the useful field of view measure accounted for separate variance in crash involvement. These findings indicate that hazard perception testing and training could be potentially useful for road safety interventions for this age group.
Resumo:
The theory of nonlinear dyamic systems provides some new methods to handle complex systems. Chaos theory offers new concepts, algorithms and methods for processing, enhancing and analyzing the measured signals. In recent years, researchers are applying the concepts from this theory to bio-signal analysis. In this work, the complex dynamics of the bio-signals such as electrocardiogram (ECG) and electroencephalogram (EEG) are analyzed using the tools of nonlinear systems theory. In the modern industrialized countries every year several hundred thousands of people die due to sudden cardiac death. The Electrocardiogram (ECG) is an important biosignal representing the sum total of millions of cardiac cell depolarization potentials. It contains important insight into the state of health and nature of the disease afflicting the heart. Heart rate variability (HRV) refers to the regulation of the sinoatrial node, the natural pacemaker of the heart by the sympathetic and parasympathetic branches of the autonomic nervous system. Heart rate variability analysis is an important tool to observe the heart's ability to respond to normal regulatory impulses that affect its rhythm. A computerbased intelligent system for analysis of cardiac states is very useful in diagnostics and disease management. Like many bio-signals, HRV signals are non-linear in nature. Higher order spectral analysis (HOS) is known to be a good tool for the analysis of non-linear systems and provides good noise immunity. In this work, we studied the HOS of the HRV signals of normal heartbeat and four classes of arrhythmia. This thesis presents some general characteristics for each of these classes of HRV signals in the bispectrum and bicoherence plots. Several features were extracted from the HOS and subjected an Analysis of Variance (ANOVA) test. The results are very promising for cardiac arrhythmia classification with a number of features yielding a p-value < 0.02 in the ANOVA test. An automated intelligent system for the identification of cardiac health is very useful in healthcare technology. In this work, seven features were extracted from the heart rate signals using HOS and fed to a support vector machine (SVM) for classification. The performance evaluation protocol in this thesis uses 330 subjects consisting of five different kinds of cardiac disease conditions. The classifier achieved a sensitivity of 90% and a specificity of 89%. This system is ready to run on larger data sets. In EEG analysis, the search for hidden information for identification of seizures has a long history. Epilepsy is a pathological condition characterized by spontaneous and unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic early detection of the seizure onsets would help the patients and observers to take appropriate precautions. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, these features are used to train both a Gaussian mixture model (GMM) classifier and a Support Vector Machine (SVM) classifier. Results show that the classifiers were able to achieve 93.11% and 92.67% classification accuracy, respectively, with selected HOS based features. About 2 hours of EEG recordings from 10 patients were used in this study. This thesis introduces unique bispectrum and bicoherence plots for various cardiac conditions and for normal, background and epileptic EEG signals. These plots reveal distinct patterns. The patterns are useful for visual interpretation by those without a deep understanding of spectral analysis such as medical practitioners. It includes original contributions in extracting features from HRV and EEG signals using HOS and entropy, in analyzing the statistical properties of such features on real data and in automated classification using these features with GMM and SVM classifiers.
Resumo:
Over the last three years, in our Early Algebra Thinking Project, we have been studying Years 3 to 5 students’ ability to generalise in a variety of situations, namely, compensation principles in computation, the balance principle in equivalence and equations, change and inverse change rules with function machines, and pattern rules with growing patterns. In these studies, we have attempted to involve a variety of models and representations and to build students’ abilities to switch between them (in line with the theories of Dreyfus, 1991, and Duval, 1999). The results have shown the negative effect of closure on generalisation in symbolic representations, the predominance of single variance generalisation over covariant generalisation in tabular representations, and the reduced ability to readily identify commonalities and relationships in enactive and iconic representations. This chapter uses the results to explore the interrelation between generalisation and verbal and visual comprehension of context. The studies evidence the importance of understanding and communicating aspects of representational forms which allowed commonalities to be seen across or between representations. Finally the chapter explores the implications of the studies for a theory that describes a growth in integration of models and representations that leads to generalisation.
Resumo:
There has been uncertainty regarding the precise role that the pocket protein Rb1 plays in murine melanocyte homeostasis. It has been reported that the TAT-Cre mediated loss of exon 19 from a floxed Rb1 allele causes melanocyte apoptosis in vivo and in vitro. This is at variance with other findings showing, either directly or indirectly, that Rb1 loss in melanocytes has no noticeable effect in vivo, but in vitro leads to a semi-transformed phenotype. In this study, we show that Rb1-null melanocytes lacking exon 19 do not undergo apoptosis and survive both in vitro and in vivo, irrespective of the developmental stage at which Cre-mediated ablation of the exon occurs. Further, Rb1 loss has no serious long-term ramifications on melanocyte homeostasis in vivo, with Rb1-null melanocytes being detected in the skin after numerous hair cycles, inferring that the melanocyte stem cell population carrying the Cre-mediated deletion is maintained. Consequently, whilst Rb1 loss in the melanocyte is able to alter cellular behaviour in vitro, it appears inconsequential with respect to melanocyte homeostasis in the mouse skin.
Resumo:
Objective Theoretical models of post-traumatic growth (PTG) have been derived in the general trauma literature to describe the post-trauma experience that facilitates the perception of positive life changes. To develop a statistical model identifying factors that are associated with PTG, structural equation modelling (SEM) was used in the current study to assess the relationships between perception of diagnosis severity, rumination, social support, distress, and PTG. Method A statistical model of PTG was tested in a sample of participants diagnosed with a variety of cancers (N=313). Results An initial principal components analysis of the measure used to assess rumination revealed three components: intrusive rumination, deliberate rumination of benefits, and life purpose rumination. SEM results indicated that the model fit the data well and that 30% of the variance in PTG was explained by the variables. Trauma severity was directly related to distress, but not to PTG. Deliberately ruminating on benefits and social support were directly related to PTG. Life purpose rumination and intrusive rumination were associated with distress. Conclusions The model showed that in addition to having unique correlating factors, distress was not related to PTG, thereby providing support for the notion that these are discrete constructs in the post-diagnosis experience. The statistical model provides support that post-diagnosis experience is simultaneously shaped by positive and negative life changes and that one or the other outcome may be prevalent or may occur concurrently. As such, an implication for practice is the need for supportive care that is holistic in nature.
Resumo:
Skipjack (SJT) (Katsuwonus pelamis) is a medium sized, pelagic, highly dispersive tuna species that occurs widely across tropical and subtropical waters. SJT constitute the largest tuna fishery in the Indian Ocean, and are currently managed as a single stock. Patterns of genetic variation in a mtDNA gene and 6 microsatellite loci were examined to test for stock structure in the northwestern Indian Ocean. 324 individuals were sampled from five major fishing grounds around Sri Lanka, and single sites in the Maldive Islands and the Laccadive Islands. Phylogenetic reconstruction of mtDNA revealed two coexisting divergent clades in the region. AMOVA (Analysis of Molecular Variance) of mtDNA data revealed significant genetic differentiation among sites (ΦST = 0.2029, P < 0.0001), also supported by SAMOVA results. AMOVA of microsatellite data also showed significant differentiation among most sampled sites (FST = 0.0256, P<0.001) consistent with the mtDNA pattern. STRUCTURE analysis of the microsatellite data revealed two differentiated stocks. While the both two marker types examined identified two genetic groups, microsatellite analysis indicates that the sampled SJT are likely to represent individuals sourced from discrete breeding grounds that are mixed in feeding grounds in Sri Lankan waters.