111 resultados para Surface patterning, Nucleation, Boundary value problems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasingly, the not-for-profit sector, as an emerging contributor to the creative economy, is creating a context for engaging creative practitioners in developing solutions to complex problems, triggering a demand for skills and knowledge needed to address this complexity. Across the university and community contexts alternative models of engagement are emerging to support this dynamic. This paper presents a case study of a creative project in which a value-based approach is used to foster a collaborative partnership between community partners and a multidisciplinary team of final year Creative Industries students who in the course of the project developed a range of communication resources, including a social media campaign, an interactive game and a series of short films to support volunteer engagement and leadership initiatives. The paper considers the implications this values approach has for the design of service learning curriculum for multidisciplinary creative teams and the potential it has to support meaningful collaboration between creatives and the not-for-profit sector. It further explores how it impact on student and partner engagement, learning outcomes and the benefits for the partner organisation. The paper concludes that a value-based approach to university-community engagement has the potential to support and enable a greater degree of reciprocity, deeper engagement between stakeholders and greater relevance of the final outcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following the derivation of amplitude equations through a new two-time-scale method [O'Malley, R. E., Jr. & Kirkinis, E (2010) A combined renormalization group-multiple scale method for singularly perturbed problems. Stud. Appl. Math. 124, 383-410], we show that a multi-scale method may often be preferable for solving singularly perturbed problems than the method of matched asymptotic expansions. We illustrate this approach with 10 singularly perturbed ordinary and partial differential equations. © 2011 Cambridge University Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we introduce a new technique to obtain the slow-motion dynamics in nonequilibrium and singularly perturbed problems characterized by multiple scales. Our method is based on a straightforward asymptotic reduction of the order of the governing differential equation and leads to amplitude equations that describe the slowly-varying envelope variation of a uniformly valid asymptotic expansion. This may constitute a simpler and in certain cases a more general approach toward the derivation of asymptotic expansions, compared to other mainstream methods such as the method of Multiple Scales or Matched Asymptotic expansions because of its relation with the Renormalization Group. We illustrate our method with a number of singularly perturbed problems for ordinary and partial differential equations and recover certain results from the literature as special cases. © 2010 - IOS Press and the authors. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces an integral approach to the study of plasma-surface interactions during the catalytic growth of selected nanostructures (NSs). This approach involves basic understanding of the plasma-specific effects in NS nucleation and growth, theoretical modelling, numerical simulations, plasma diagnostics, and surface microanalysis. Using an example of plasma-assisted growth of surface-supported single-walled carbon nanotubes, we discuss how the combination of these techniques may help improve the outcomes of the growth process. A specific focus here is on the effects of nanoscale plasma-surface interactions on the NS growth and how the available techniques may be used, both in situ and ex situ to optimize the growth process and structural parameters of NSs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asymmetrical electrical boundary conditions in (001)-oriented Pb(Zr 0.2TiO0.8)O3 (PZT) epitaxial ultrathin ferroelectric films are exploited to control surface photochemical reactivity determined by the sign of the surface polarization charge. It is shown that the preferential orientation of polarization in the as-grown PZT layer can be manipulated by choosing an appropriate type of bottom electrode material. PZT films deposited on the SrRuO3 electrodes exhibit preferential upward polarization (C) whilst the same films grown on the (La,Sr)CoO 3-electrodes are polarized downward (C-). Photochemical activity of the PZT surfaces with different surface polarization charges has been tested by studying deposition of silver nanoparticles from AgNO3 solution under UV irradiation. PZT surfaces with preferential C orientation possess a more active surface for metal reduction than their C- counterparts, evidenced by large differences in the concentration of deposited silver nanoparticles. This effect is attributed to band bending at the bottom interface which varies depending on the difference in work functions of PZT and electrode materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The possibility to control the morphology and nucleation density of quasi-one-dimensional, single-crystalline α -Fe2 O3 nanostructures by varying the electric potential of iron surfaces exposed to reactive oxygen plasmas is demonstrated experimentally. A systematic increase in the oxygen ion flux through rf biasing of otherwise floating substrates and then an additional increase of the ion/neutral density resulted in remarkable structural transformations of straight nanoneedles into nanowires with controlled tapering/aspect ratio and also in larger nucleation densities. Multiscale numerical simulations relate the microscopic ion flux topographies to the nanostructure nucleation and morphological evolution. This approach is applicable to other metal-oxide nanostructures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This feature article introduces a deterministic approach for the rapid, single-step, direct synthesis of metal oxide nanowires. This approach is based on the exposure of thin metal samples to reactive oxygen plasmas and does not require any intervening processing or external substrate heating. The critical roles of the reactive oxygen plasmas, surface processes, and plasma-surface interactions that enable this growth are critically examined by using a deterministic viewpoint. The essentials of the experimental procedures and reactor design are presented and related to the key process requirements. The nucleation and growth kinetics is discussed for typical solid-liquid-solid and vapor-solid-solid mechanisms related to the synthesis of the oxide nanowires of metals with low (Ga, Cd) and high (Fe) melting points, respectively. Numerical simulations are focused on the possibility to predict the nanowire nucleation points through the interaction of the plasma radicals and ions with the nanoscale morphological features on the surface, as well as to control the localized 'hot spots' that in turn determine the nanowire size and shape. This generic approach can be applied to virtually any oxide nanoscale system and further confirms the applicability of the plasma nanoscience approaches for deterministic nanoscale synthesis and processing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ag nanoparticles and Fe-coated Si micrograins were separately deposited onto Si(1 0 0) surfaces and then exposed to an Ar + CH4 microplasma at atmospheric pressure. For the Ag nanoparticles, self-organized carbon nanowires, up to 400 nm in length were produced, whereas for the Fe-coated Si micrograins carbon connections with the length up to 100 μm were synthesized on the plasma-exposed surface area of about 0.5 mm2. The experiment has revealed that long carbon connections and short nanowires demonstrate quite similar behavior and structure. While most connections/nanowires tended to link the nearest particles, some wires were found to 'dissolve' into the substrate without terminating at the second particle. Both connections and nanowires are mostly linear, but long carbon connections can form kinks which were not observed in the carbon nanowire networks. A growth scenario explaining the carbon structure nucleation and growth is proposed. Multiscale numerical simulations reveal that the electric field pattern around the growing connections/nanowires strongly affects the surface diffusion of carbon adatoms, the main driving force for the observed self-organization in the system. The results suggest that the microplasma-generated surface charges can be used as effective controls for the self-organized formation of complex carbon-based nano-networks for integrated nanodevices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An innovative approach to precise tailoring of surface density, shapes, and sizes of single-crystalline α-Fe 2O 3 nanowires and nanobelts by controlling interactions of reactive oxygen plasma-generated species with the Fe surface is proposed. This strongly nonequilibrium, rapid, almost incubation-free, high-rate growth directly from the solid-solid interface can also be applied to other oxide materials and is based on deterministic control of the density of oxygen species and the surface conditions, which determine the nanostructure nucleation and growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This contribution provides arguments why and in which cases low-temperature plasmas should be used for nanoscale surface and interface engineering and discusses several advantages offered by plasma-based processes and tools compared to neutral gas fabrication routes. Relevant processes involve nanotexturing (etching, sputtering, nanostructuring, pre-patterning, etc.) and composition/structure control at nanoscales (phases, layering, elemental presence, doping, functionalization, etc.) and complex combinations thereof. A case study in p-Si/n-Si solar cell junction exemplifies a successful use of inductively coupled plasma-assisted RF magnetron sputtering for nanoscale fabrication of a bi-layered stack of unconventionally doped highly-crystalline silicon nanofilms with engineered high-quality interfaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical and experimental results associated with the studies of different properties of surface-type waves (SW) in plasma-like medium-metal structures are reviewed. The propagation of surface waves in the Voigt geometry (the SW propagate across the external magnetic field, which is parallel to the interface) is considered. Various problems dealing with the linear properties of the SW (dispersion characteristics, electromagnetic fields topography, influence of the inhomogeneity of the medium, etc.); excitation mechanisms of the plasma-metal waveguide structures (parametric, drift, diffraction, etc. mechanisms); nonlinear effects associated with SW propagation (higher harmonics generation, self-interaction, nonlinear damping, nonlinear interactions, etc.) are presented. In many cases the results are valid for both gaseous and solid-state plasmas. © 1999 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nonlinear effect of hf surface waves self-interaction in a magnetoactive planar plasma waveguide is studies. The waveguide structure under consideration can be formed by gaseous or semiconducting homogeneous plasma, which is limited by a perfectly conducting metal surface. The surface (localized near the surface) wave perturbations propagating on the plasma-metal boundary perpendicular to the constant external magnetic field, are investigated. The nonlinear frequency shift connected with interaction of the second harmonic and static surface perturbations with the main frequency wave, is determined using the approximation of weak nonlinearity. It is shown that the process of double-frequency signal generation is the dissipative one as a result of bulk wave excitation on the surface wave second harmonic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine the effect of a kinetic undercooling condition on the evolution of a free boundary in Hele--Shaw flow, in both bubble and channel geometries. We present analytical and numerical evidence that the bubble boundary is unstable and may develop one or more corners in finite time, for both expansion and contraction cases. This loss of regularity is interesting because it occurs regardless of whether the less viscous fluid is displacing the more viscous fluid, or vice versa. We show that small contracting bubbles are described to leading order by a well-studied geometric flow rule. Exact solutions to this asymptotic problem continue past the corner formation until the bubble contracts to a point as a slit in the limit. Lastly, we consider the evolving boundary with kinetic undercooling in a Saffman--Taylor channel geometry. The boundary may either form corners in finite time, or evolve to a single long finger travelling at constant speed, depending on the strength of kinetic undercooling. We demonstrate these two different behaviours numerically. For the travelling finger, we present results of a numerical solution method similar to that used to demonstrate the selection of discrete fingers by surface tension. With kinetic undercooling, a continuum of corner-free travelling fingers exists for any finger width above a critical value, which goes to zero as the kinetic undercooling vanishes. We have not been able to compute the discrete family of analytic solutions, predicted by previous asymptotic analysis, because the numerical scheme cannot distinguish between solutions characterised by analytic fingers and those which are corner-free but non-analytic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Woods Bagot 2007 refurbishment of the Qantas and British Airways Bangkok Business lounge in the Survarnabhumi Airport features wall finishes designed by wallpaper designer, Florence Broadhurst (1899-1977) and Thai Silk trader, Jim Thompson (1906-1967). This distinctive selection, which is proclaimed on the airport’s website, of patterned wall surfaces side by side draws attention to their striking similarities and their defining differences . Thompson and Broadhurst would appear to be worlds apart, but here in the airport their work brings them together. Thompson, the son of a wealthy cotton family in America, worked as an architect before joining the army. He moved to Bangkok to start The Thai Silk Company in 1948. Broadhurst was born on a farm in Mt. Perry, Queensland. She began her career as a performance artist, as part of an Australian troupe in Shanghai, moving onto pursue a career in fashion design, catering to the middle and upper classes in London. Upon her return to Australia, Broadhurst started a print design company in 1959. Both Broadhurst and Thompson pursued multiple careers, lived many lives, and died under mysterious circumstances. Broadhurst was murdered in 1977 at her Sydney print warehouse, which remains an unsolved crime. Thompson disappeared in Malaysia in 1967 and his body has never been found. This chapter investigates the parallels between Thompson and Broadhurst and what lead them to design such popular patterns for wall surfaces towards the end of their careers. While neither designer was a household name, their work is familiar to most, seen in the costume and set design of films, on the walls of restaurants and cafes and even in family homes. The reason for the popularity of their patterns has not previously been analysed. However, this chapter suggests that the patterns are intriguing because they contain something of their designers’ identities. It suggests that the coloured surface provides a way of camouflaging and hiding its subjects’ histories, such that Broadhurst and Thompson, consciously or unconsciously, used the patterned surface as a plane in which their past lives could be buried. The revealing nature of the stark white wall, compared with the forgiveness provided by the pattern in which to hide, is elaborated by painter and advocate for polychromatic architecture, Fernand Léger in his essay, “The Wall, The Architect, The Painter (1965).” Léger writes that, “the modern architect has gone too far in his magnificent attempts to cleanse through emptiness,” and that the resultant white walls of modernity create ‘an impalpability of air, of slick, brilliant new surfaces where nothing can be hidden any longer …even shadows don’t dare to enter’. To counter the exposure produced by the white wall, Thompson and Broadhurst designed patterned surfaces that could harbour their personal histories. Broadhurst and Thompson’s works share a number of commonalities in their design production, even though their work in print design commenced a decade apart. Both designers opted to work more with traditional methods of pattern making. Broadhurst used hand-operated screens, and Thompson outsourced work to local weavers and refrained from operating out of a factory. Despite humble beginnings, Broadhurst and Thompson enjoyed international success with their wall patterns being featured in a number of renowned international hotels in Bahrain, Singapore, Sydney, and London in the 1970s and 1980s. Their patterns were also transferred to fabric for soft furnishings and clothing. Thompson’s patterns were used for costumes in films including the King and I and Ben Hur. Broadhurst’s patterns were also widely used by fashion designers and artists, such as Akira Isogowa‘s costume design for Salome, a 1998 production by the Sydney Dance Company. Most recently her print designs have been used by skin illustrator Emma Hack, in a series of works painting female bodies into Broadhurst’s patterns. Hack’s works camouflage the models’ bodies into the patterned surface, assimilating subject and surface, hinting at there being something living within the patterned wall. More than four decades after Broadhurst’s murder and five decades since Thompson’s disappearance, their print designs persist as more than just a legacy. They are applied as surface finishes with the same fervour as when the designs were first released. This chapter argues that the reason for the ongoing celebration of their work is that there is the impalpable presence of the creator in the patterns. It suggests that the patterns blur the boundary between subject and surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thin plate spline finite element methods are used to fit a surface to an irregularly scattered dataset [S. Roberts, M. Hegland, and I. Altas. Approximation of a Thin Plate Spline Smoother using Continuous Piecewise Polynomial Functions. SIAM, 1:208--234, 2003]. The computational bottleneck for this algorithm is the solution of large, ill-conditioned systems of linear equations at each step of a generalised cross validation algorithm. Preconditioning techniques are investigated to accelerate the convergence of the solution of these systems using Krylov subspace methods. The preconditioners under consideration are block diagonal, block triangular and constraint preconditioners [M. Benzi, G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numer., 14:1--137, 2005]. The effectiveness of each of these preconditioners is examined on a sample dataset taken from a known surface. From our numerical investigation, constraint preconditioners appear to provide improved convergence for this surface fitting problem compared to block preconditioners.