243 resultados para Sorghum -- Biotechnology


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense (Foc), is one of the most devastating diseases of banana (Musa spp.). Apart from resistant cultivars, there are no effective control measures for the disease. We investigated whether the transgenic expression of apoptosis-inhibition related genes in banana could be used to confer disease resistance. Embryogenic cell suspensions of the banana cultivar, ‘Lady Finger’, were stably transformed with animal genes that negatively regulate apoptosis, namely Bcl-xL, Ced-9 and Bcl-2 3’ UTR, and independently transformed plant lines were regenerated for testing. Following a 12 week exposure to Foc race 1 in small-plant glasshouse bioassays, seven transgenic lines (2 x Bcl-xL, 3 x Ced-9 and 2 x Bcl-2 3’ UTR) showed significantly less internal and external disease symptoms than the wild-type susceptible ‘Lady Finger’ banana plants used as positive controls. Of these, one Bcl-2 3’ UTR line showed resistance that was equivalent to that of wild-type Cavendish bananas that were included as resistant negative controls. Further, the resistance of this line continued for 23 weeks post-inoculation at which time the experiment was terminated. Using TUNEL assays, Foc race 1 was shown to induce apoptosis-like features in the roots of wild-type ‘Lady Finger’ plants consistent with a necrotrophic phase in the lifecycle of this pathogen. This was further supported by the observed reduction of these effects in the roots of the resistant Bcl-2 3’ UTR transgenic line. This is the first report on the generation of transgenic banana plants with resistance to Fusarium wilt.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Smut fungi are important pathogens of grasses, including the cultivated crops maize, sorghum and sugarcane. Typically, smut fungi infect the inflorescence of their host plants. Three genera of smut fungi (Ustilago, Sporisorium and Macalpinomyces) form a complex with overlapping morphological characters, making species placement problematic. For example, the newly described Macalpinomyces mackinlayi possesses a combination of morphological characters such that it cannot be unambiguously accommodated in any of the three genera. Previous attempts to define Ustilago, Sporisorium and Macalpinomyces using morphology and molecular phylogenetics have highlighted the polyphyletic nature of the genera, but have failed to produce a satisfactory taxonomic resolution. A detailed systematic study of 137 smut species in the Ustilago-Sporisorium- Macalpinomyces complex was completed in the current work. Morphological and DNA sequence data from five loci were assessed with maximum likelihood and Bayesian inference to reconstruct a phylogeny of the complex. The phylogenetic hypotheses generated were used to identify morphological synapomorphies, some of which had previously been dismissed as a useful way to delimit the complex. These synapomorphic characters are the basis for a revised taxonomic classification of the Ustilago-Sporisorium-Macalpinomyces complex, which takes into account their morphological diversity and coevolution with their grass hosts. The new classification is based on a redescription of the type genus Sporisorium, and the establishment of four genera, described from newly recognised monophyletic groups, to accommodate species expelled from Sporisorium. Over 150 taxonomic combinations have been proposed as an outcome of this investigation, which makes a rigorous and objective contribution to the fungal systematics of these important plant pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an age where digital innovation knows no boundaries, research in the area of brain-computer interface and other neural interface devices go where none have gone before. The possibilities are endless and as dreams become reality, the implications of these amazing developments should be considered. Some of these new devices have been created to correct or minimise the effects of disease or injury so the paper discusses some of the current research and development in the area, including neuroprosthetics. To assist researchers and academics in identifying some of the legal and ethical issues that might arise as a result of research and development of neural interface devices, using both non-invasive techniques and invasive procedures, the paper discusses a number of recent observations of authors in the field. The issue of enhancing human attributes by incorporating these new devices is also considered. Such enhancement may be regarded as freeing the mind from the constraints of the body, but there are legal and moral issues that researchers and academics would be well advised to contemplate as these new devices are developed and used. While different fact situation surround each of these new devices, and those that are yet to come, consideration of the legal and ethical landscape may assist researchers and academics in dealing effectively with matters that arise in these times of transition. Lawyers could seek to facilitate the resolution of the legal disputes that arise in this area of research and development within the existing judicial and legislative frameworks. Whether these frameworks will suffice, or will need to change in order to enable effective resolution, is a broader question to be explored.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: Electrospun nanofibers represent potent guidance substrates for nervous tissue repair. Development of nanofiber-based scaffolds for CNS repair requires, as a first step, an understanding of appropriate neural cell type-substrate interactions. Materials & methods: Astrocyte–nanofiber interactions (e.g., adhesion, proliferation, process extension and migration) were studied by comparing human neural progenitor-derived astrocytes (hNP-ACs) and a human astrocytoma cell line (U373) with aligned polycaprolactone (PCL) nanofibers or blended (25% type I collagen/75% PCL) nanofibers. Neuron–nanofiber interactions were assessed using a differentiated human neuroblastoma cell line (SH-SY5Y). Results & discussion: U373 cells and hNP-AC showed similar process alignment and length when associated with PCL or Type I collagen/PCL nanofibers. Cell adhesion and migration by hNP-AC were clearly improved by functionalization of nanofiber surfaces with type I collagen. Functionalized nanofibers had no such effect on U373 cells. Another clear difference between the U373 cells and hNP-AC interactions with the nanofiber substrate was proliferation; the cell line demonstrating strong proliferation, whereas the hNP-AC line showed no proliferation on either type of nanofiber. Long axonal growth (up to 600 µm in length) of SH-SY5Y neurons followed the orientation of both types of nanofibers even though adhesion of the processes to the fibers was poor. Conclusion: The use of cell lines is of only limited predictive value when studying cell–substrate interactions but both morphology and alignment of human astrocytes were affected profoundly by nanofibers. Nanofiber surface functionalization with collagen significantly improved hNP-AC adhesion and migration. Alternative forms of functionalization may be required for optimal axon–nanofiber interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Haematopoiesis is the process by which a hierarchy of mature and progenitor blood cells are formed. These cell populations are all derived from multipotent haematopoietic stem cells (HSC), which reside in the bone marrow ‘niche’ of adult humans. Over the lifetime of a healthy individual, this HSC population replenishes between 1010-1011 blood cells on a daily basis. Dysregulation of this system can lead to a number of haematopoietic diseases, including aplastic anaemias and leukaemias, which result in, or require for disease resolution, bone marrow cell depletion. In 1956, E. Donnall Thomas demonstrated that haematopoiesis could be restored by transplanting bone marrow-derived cells from one man into his identical twin brother, who was suffering from advanced leukaemia. His success drew significant interest in academic research and medicine communities, and 12 years later, the first successful allogeneic transplant was performed. To this day, HSCs remain the most studied and characterised stem cell population. In fact, HSCs are the only stem cell population routinely utilised in the clinic. As such, HSCs function as a model system both for the biological investigation of stem cells, as well as for their clinical application. Herein, we briefly review HSC transplantation, strategies for the ex vivo cultivation of HSCs, recent clinical outcomes, and their impact on the future direction of HSC transplantation therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Presently, global rates of skin cancers induced by ultraviolet radiation (UVR) exposure are on the rise. In view of this, current knowledge gaps in the biology of photocarcinogenesis and skin cancer progression urgently need to be addressed. One factor that has limited skin cancer research has been the need for a reproducible and physiologically-relevant model able to represent the complexity of human skin. This review outlines the main currently-used in vitro models of UVR-induced skin damage. This includes the use of conventional two-dimensional cell culture techniques and the major animal models that have been employed in photobiology and photocarcinogenesis research. Additionally, the progression towards the use of cultured skin explants and tissue-engineered skin constructs, and their utility as models of native skin's responses to UVR are described. The inherent advantages and disadvantages of these in vitro systems are also discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monitoring environmental health is becoming increasingly important as human activity and climate change place greater pressure on global biodiversity. Acoustic sensors provide the ability to collect data passively, objectively and continuously across large areas for extended periods. While these factors make acoustic sensors attractive as autonomous data collectors, there are significant issues associated with large-scale data manipulation and analysis. We present our current research into techniques for analysing large volumes of acoustic data efficiently. We provide an overview of a novel online acoustic environmental workbench and discuss a number of approaches to scaling analysis of acoustic data; online collaboration, manual, automatic and human-in-the loop analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant tissue culture is a technique that exploits the ability of many plant cells to revert to a meristematic state. Although originally developed for botanical research, plant tissue culture has now evolved into important commercial practices and has become a significant research tool in agriculture, horticulture and in many other areas of plant sciences. Plant tissue culture is the sterile culture of plant cells, tissues, or organs under aseptic conditions leading to cell multiplication or regeneration or organs and whole plants. The steps required to develop reliable systems for plant regeneration and their application in plant biotechnology are reviewed in countless books. Some of the major landmarks in the evolution of in vitro techniques are summarised in Table 5.1. In this chapter the current applications of this technology to agriculture, horticulture, forestry and plant breeding are briefly described with specific examples from Australian plants when applicable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

133Cs relaxation-time studies of tissues from rats into which cesium has been incorporated by dietary loading have been carried out in vivo and in vitro. Whereas tissue T1 values are on the order of seconds, T2 values are as low as a few tens of milliseconds, 133Cs tissue relaxation times are analogous to those of 39K in the same tissues, but are more readily measured because of the greater sensitivity of 133Cs compared with 39K, T1 and T2 data of excised tissue at two resonance frequencies (65.60 and 39.37 MHz) and temperatures (302 and 278 K) have been analyzed in terms of a general description of spin- relaxation. The results are consistent with most of the cesium ions being in a free state, undergoing fast exchange with bound ions having long correlation times located in one or more intracellular compartments,