94 resultados para Solid Electrolyte
Resumo:
Porosity is one of the key parameters of the macroscopic structure of porous media, generally defined as the ratio of the free spaces occupied (by the volume of air) within the material to the total volume of the material. Porosity is determined by measuring skeletal volume and the envelope volume. Solid displacement method is one of the inexpensive and easy methods to determine the envelope volume of a sample with an irregular shape. In this method, generally glass beads are used as a solid due to their uniform size, compactness and fluidity properties. The smaller size of the glass beads means that they enter into the open pores which have a larger diameter than the glass beads. Although extensive research has been carried out on porosity determination using displacement method, no study exists which adequately reports micro-level observation of the sample during measurement. This study set out with the aim of assessing the accuracy of solid displacement method of bulk density measurement of dried foods by micro-level observation. Solid displacement method of porosity determination was conducted using a cylindrical vial (cylindrical plastic container) and 57 µm glass beads in order to measure the bulk density of apple slices at different moisture contents. A scanning electron microscope (SEM), a profilometer and ImageJ software were used to investigate the penetration of glass beads into the surface pores during the determination of the porosity of dried food. A helium pycnometer was used to measure the particle density of the sample. Results show that a significant number of pores were large enough to allow the glass beads to enter into the pores, thereby causing some erroneous results. It was also found that coating the dried sample with appropriate coating material prior to measurement can resolve this problem.
Resumo:
Objective To evaluate the evidence for association between obesity risk outcomes >12 months of age and timing of solid introduction in healthy term infants in developed countries, the large majority of whom are not exclusively breastfed to 6 months of age. Methods Studies included were published 1990-March 2013. Results Twenty-six papers with weight status or obesity prevalence outcomes were identified. Studies were predominantly cohort design, most with important methodological limitations. Ten studies reported a positive association. Of these only two were large good quality studies and both examined the outcome of early (<4 months) solid introduction. None of the four good quality studies that directly evaluated current guidelines provided evidence of any clinically relevant protective effect of solid introduction from 4-5 versus ≥ 6 months of age. Conclusion Overall the introduction of solids prior to 4 months may result in increased risk of childhood obesity but there is little evidence of adverse weight status outcomes associated with introducing solids at 4-6 rather than at 6 months. Implications More and better quality evidence is required to inform guidelines on the ‘when, what and how’ of complementary feeding.
Resumo:
Mechanically interlocked molecules, such as catenanes and rotaxanes, are fascinating due to their unique sensing and catalytic properties and their potential to act as molecular motors or switches. Traditionally their synthesis has been laborious and expensive, however this research project endeavoured to overcome this challenge by exploring novel ways of preparing mechanically interlocked molecules both in solution and on surfaces. A series of disulfide-linked macrocycles, [2]catenanes and [2]rotaxanes were synthesised in solution using reversible dynamic covalent chemistry. Subsequently, the interlocked architectures were adapted into solid-tethered systems via attachment to swelling polystyrene resins.
Resumo:
This paper critically evaluates the empirical evidence of 36 studies regarding the comparative cost-effectiveness of group and individual cognitive behaviour therapy (CBT) as a whole, and also for specific mental disorders (e.g. depression, anxiety, substance abuse) or populations (e.g. children). Methods of calculating costs, as well as methods of comparing treatment outcomes were appraised and criticized. Overall, the evidence that group CBT is more cost-effective than individual CBT is mixed, with group CBT appearing to be more cost effective in treating depression and children, but less cost effective in treating drugs and alcohol dependence, anxiety and social phobias. In addition, methodological weaknesses in the studies assessed are noted. There is a need to improve cost calculation methodology, as well as more solid and a greater number of empirical cost-effectiveness studies before a firm conclusion can be reached that group CBT is more cost effective then individual CBT.
Resumo:
The insecure supply of fossil fuel coerces the scientific society to keep a vision to boost investments in the renewable energy sector. Among the many renewable fuels currently available around the world, biodiesel offers an immediate impact in our energy. In fact, a huge interest in related research indicates a promising future for the biodiesel technology. Heterogeneous catalyzed production of biodiesel has emerged as a preferred route as it is environmentally benign needs no water washing and product separation is much easier. The number of well-defined catalyst complexes that are able to catalyze transesterification reactions efficiently has been significantly expanded in recent years. The activity of catalysts, specifically in application to solid acid/base catalyst in transesterification reaction depends on their structure, strength of basicity/acidity, surface area as well as the stability of catalyst. There are various process intensification technologies based on the use of alternate energy sources such as ultrasound and microwave. The latest advances in research and development related to biodiesel production is represented by non-catalytic supercritical method and focussed exclusively on these processes as forthcoming transesterification processes. The latest developments in this field featuring highly active catalyst complexes are outlined in this review. The knowledge of more extensive research on advances in biofuels will allow a deeper insight into the mechanism of these technologies toward meeting the critical energy challenges in future.
Resumo:
A method for determination of tricyclazole in water using solid phase extraction and high performance liquid chromatography (HPLC) with UV detection at 230nm and a mobile phase of acetonitrile:water (20:80, v/v) was developed. A performance comparison between two types of solid phase sorbents, the C18 sorbent of Supelclean ENVI-18 cartridge and the styrene-divinyl benzene copolymer sorbent of Sep-Pak PS2-Plus cartridge was conducted. The Sep-Pak PS2-Plus cartridges were found more suitable for extracting tricyclazole from water samples than the Supelclean ENVI-18 cartridges. For this cartridge, both methanol and ethyl acetate produced good results. The method was validated with good linearity and with a limit of detection of 0.008gL-1 for a 500-fold concentration through the SPE procedure. The recoveries of the method were stable at 80% and the precision was from 1.1-6.0% within the range of fortified concentrations. The validated method was also applied to measure the concentrations of tricyclazole in real paddy water.
Resumo:
Aims: To establish a model to measure bidirectional flow of water from a glucose oral rehydration solution (G-ORS) and a newly developed rice-based oral rehydration solution (R-ORS) using a dual isotope tracer technique in a rat perfusion model. To measure net water, sodium and potassium absorption from the ORS. Methods: In viva steady-state perfusion studies were carried out in normal and secreting (induced by cholera toxin) rat small intestine (n = 11 in each group). To determine bidirectional flow of water from the ORS the animals were initially labelled with tritium, and deuterium was added to the perfusion solution. Sequential perfusate and blood samples were collected after attainment of steady-state conditions and analysed for water and electrolyte content. Results: There was a significant increase in net water absorption from the R-ORS compared to the G-ORS in both the normal (P < 0.02) and secreting intestine (P < 0.05). Water efflux was significantly reduced in the R-ORS group compared to the G-ORS group in both the normal (P < 0.01) and the secreting intestine (P < 0.01). There was an increase in sodium absorption in the R-ORS group compared to the G-ORS. The G-ORS produced a significantly greater blood glucose level at 75 min compared to the R-ORS (P < 0.03) in the secreting intestine. Conclusions: This study demonstrates the improved water absorption from a rice-based ORS in both the normal and secreting intestine. Evidence that the absorption of water may be influenced by the osmolality of the ORS was also demonstrated.
Resumo:
An open-label, inpatient study was undertaken to compare the efficacy of two oral rehydration solutions (ORS) given randomly to children aged 1-10 years who had acute gastroenteritis with mild or moderate dehydration (n = 45). One solution contained 60 mmol/L sodium and 1.8% glucose, total osmolality 240 mosm/l (gastrolyte, Rhone-poulenc, Rorer) and the other contained 26 mmol/l sodium, 2.7% glucose and 3.6% sucrose, total osmolality 340 mOsm/l (Glucolyte, Gilseal). Analysis of data indicated that Gastrolyte therapy resulted in significantly fewer episodes and volume of vomiting over all time periods in comparison to Glucolyte and significantly less stool volume during the first 8 h and in the 0-24 h period. The differences between treatments in degree of dehydration at each follow-up period, duration of diarrhea, and duration of hospital stay were not significant. No adverse drug reactions occurred. Six patients received intravenous rehydration treatment and were considered treatment failures. We conclude that oral rehydration therapy is safe and efficacious in the management of dehydration in acute diarrhoea and that the lower osmolar rehydration solution has clinically marginal advantages.
Resumo:
This paper presents a novel three-dimensional hybrid smoothed finite element method (H-SFEM) for solid mechanics problems. In 3D H-SFEM, the strain field is assumed to be the weighted average between compatible strains from the finite element method (FEM) and smoothed strains from the node-based smoothed FEM with a parameter α equipped into H-SFEM. By adjusting α, the upper and lower bound solutions in the strain energy norm and eigenfrequencies can always be obtained. The optimized α value in 3D H-SFEM using a tetrahedron mesh possesses a close-to-exact stiffness of the continuous system, and produces ultra-accurate solutions in terms of displacement, strain energy and eigenfrequencies in the linear and nonlinear problems. The novel domain-based selective scheme is proposed leading to a combined selective H-SFEM model that is immune from volumetric locking and hence works well for nearly incompressible materials. The proposed 3D H-SFEM is an innovative and unique numerical method with its distinct features, which has great potential in the successful application for solid mechanics problems.
Resumo:
The acceptance of broadband ultrasound attenuation (BUA) for the assessment of osteoporosis suffers from a limited understanding of both ultrasound wave propagation through cancellous bone and its exact dependence upon the material and structural properties. It has recently been proposed that ultrasound wave propagation in cancellous bone may be described by a concept of parallel sonic rays; the transit time of each ray defined by the proportion of bone and marrow propagated. A Transit Time Spectrum (TTS) describes the proportion of sonic rays having a particular transit time, effectively describing the lateral inhomogeneity of transit times over the surface aperture of the receive ultrasound transducer. The aim of this study was to test the hypothesis that the solid volume fraction (SVF) of simplified bone:marrow replica models may be reliably estimated from the corresponding ultrasound transit time spectrum. Transit time spectra were derived via digital deconvolution of the experimentally measured input and output ultrasonic signals, and compared to predicted TTS based on the parallel sonic ray concept, demonstrating agreement in both position and amplitude of spectral peaks. Solid volume fraction was calculated from the TTS; agreement between true (geometric calculation) with predicted (computer simulation) and experimentally-derived values were R2=99.9% and R2=97.3% respectively. It is therefore envisaged that ultrasound transit time spectroscopy (UTTS) offers the potential to reliably estimate bone mineral density and hence the established T-score parameter for clinical osteoporosis assessment.
Resumo:
Aims To observe medication solid dosage form modification in aged care facilities (ACFs), and assess staff levels of self-perceived knowledge of medication modification and the types of resources available to them. Method Observation of medication rounds in a convenience sample of Australian Capital Territory ACFs and assessment of staff knowledge of dosage form modification and available resources. Results From 160 observations across six medication rounds, 29 residents had a total of 75 medications modified by the nursing staff prior to administration, with 32% of these instances identified as inappropriate. The methods used for crushing and administration resulted in drug mixing, spillage and incomplete dosing. The staff reported adequate resources; however, a lack of knowledge on how to locate and use these resources was evident. Conclusions Improved staff training on how to use available resources is needed to reduce the observed high incidence of inappropriate medication crushing.