84 resultados para SHOCK-WAVES
Resumo:
We examine IT-enabled Business Transformations (ITBT) based on three case studies of successful, multi-year ERP implementation programs. Given the inconsistencies in segmenting the different key periods in ITBTs in both literature and our cases, we sought to consolidate the common events or critical incidents in such initiatives. We label those key periods as waves, and the emergence of triggers and reactions thereunto in the management of business transformations. We show that business transformations unfold in four distinct waves: Wave 1 Concept Development, Wave 2 Blueprint Design, Wave 3 Solution Delivery and Wave 4 Post-Transformation. These waves are characterized by the occurrence of strategic- and program-level triggers to which organizations respond by invoking different management services. Our interpretive research provides a new conceptualization of ITBTs based on a service-oriented view of such initiatives. This view draws attention to managerial capabilities as a service to transformations, and how and when these capabilities are required to respond to triggering incidents. We outline propositions and recommendations for business transformation management.
Resumo:
This paper presents a discussion on the use of MIMO and SISO techniques for identification of the radiation force terms in models for surface vessels. We compare and discuss two techniques recently proposed in literature for this application: time domain identification and frequency domain identification. We compare the methods in terms of estimates model order, accuracy of the fit, use of the available information, and ease of use and implementation.
Resumo:
This thesis contains a mathematical investigation of the existence of travelling wave solutions to singularly perturbed advection-reaction-diffusion models of biological processes. An enhanced mathematical understanding of these solutions and models is gained via the identification of canards (special solutions of fast/slow dynamical systems) and their role in the existence of the most biologically relevant, shock-like solutions. The analysis focuses on two existing models. A new proof of existence of a whole family of travelling waves is provided for a model describing malignant tumour invasion, while new solutions are identified for a model describing wound healing angiogenesis.
Resumo:
Linear water wave theory suggests that wave patterns caused by a steadily moving disturbance are contained within a wedge whose half-angle depends on the depth-based Froude number $F_H$. For the problem of flow past an axisymmetric pressure distribution in a finite-depth channel, we report on the apparent angle of the wake, which is the angle of maximum peaks. For moderately deep channels, the dependence of the apparent wake angle on the Froude number is very different to the wedge angle, and varies smoothly as $F_H$ passes through the critical value $F_H=1$. For shallow water, the two angles tend to follow each other more closely, which leads to very large apparent wake angles for certain regimes.
Resumo:
We demonstrate a geometrically inspired technique for computing Evans functions for the linearised operators about travelling waves. Using the examples of the F-KPP equation and a Keller–Segel model of bacterial chemotaxis, we produce an Evans function which is computable through several orders of magnitude in the spectral parameter and show how such a function can naturally be extended into the continuous spectrum. In both examples, we use this function to numerically verify the absence of eigenvalues in a large region of the right half of the spectral plane. We also include a new proof of spectral stability in the appropriate weighted space of travelling waves of speed c≥sqrt(2δ) in the F-KPP equation.
Resumo:
PURPOSE: This study investigated the significance of baseline cortisol levels and adrenal response to corticotropin in shocked patients after acute myocardial infarction (AMI). METHODS: A short corticotropin stimulation test was performed in 35 patients with cardiogenic shock after AMI by intravenously injecting of 250 μg of tetracosactrin (Synacthen). Blood samples were obtained at baseline (T0) before and at 30 (T30) and 60 (T60) minutes after the test to determine plasma total cortisol (TC) and free cortisol concentrations. The main outcome measure was in-hospital mortality and its association with T0 TC and maximum response to corticotropin (maximum difference [Δ max] in cortisol levels between T0 and the highest value between T30 and T60). RESULTS: The in-hospital mortality was 37%, and the median time to death was 4 days (interquartile range, 3-9 days). There was some evidence of an increased mortality in patients with T0 TC concentrations greater than 34 μg/dL (P=.07). Maximum difference by itself was not an independent predictor of death. Patients with a T0 TC 34 μg/dL or less and Δ max greater than 9 μg/dL appeared to have the most favorable survival (91%) when compared with the other 2 groups: T0 34 μg/dL or less and Δ max 9 μg/dL or less or T0 34 μg/dL or higher and Δ max greater than 9 μg/dL (75%; P=.8) and T0 greater than 34 μg/dL and Δ max 9 μg/dL or less (60%; P=.02). Corticosteroid therapy was associated with an increased mortality (P=.03). There was a strong correlation between plasma TC and free cortisol (r=0.85). CONCLUSIONS: A high baseline plasma TC was associated with a trend toward increased mortality in patients with cardiogenic shock post-AMI. Patients with lower baseline TC, but with an inducible adrenal response, appeared to have a survival benefit. A prognostic system based on basal TC and Δ max similar to that described in septic shock appears feasible in this cohort. Corticosteroid therapy was associated with adverse outcomes. These findings require further validation in larger studies.
Resumo:
This paper presents a detailed simulation model of a Naval coastal patrol vessel. The vessel described is a 50m long, fast monohull coastal patrol vessel. The paper describes the complete model and its implementation in Matlab-Simulink. In order to promote the use of this model, the Simulink files are openly available through a website.
Resumo:
In order to assess the structural reliability of bridges, an accurate and cost effective Non-Destructive Evaluation (NDE) technology is required to ensure their safe and reliable operation. Over 60% of the Australian National Highway System is prestressed concrete (PSC) bridges according to the Bureau of Transport and Communication Economics (1997). Most of the in-service bridges are more than 30 years old and may experience a heavier traffic load than their original intended level. Use of Ultrasonic waves is continuously increasing for (NDE) and Structural Health Monitoring (SHM) in civil, aerospace, electrical, mechanical applications. Ultrasonic Lamb waves are becoming more popular for NDE because it can propagate long distance and reach hidden regions with less energy loses. The purpose of this study is to numerically quantify prestress force (PSF) of (PSC) beam using the fundamental theory of acoustic-elasticity. A three-dimension finite element modelling approach is set up to perform parametric studies in order to better understand how the lamb wave propagation in PSC beam is affected by changing in the PSF level. Results from acoustic-elastic measurement on prestressed beam are presented, showing the feasibility of the lamb wave for PSF evaluation in PSC bridges.
Resumo:
Thermal properties, namely, Debye temperature, thermal expansion coefficient, heat capacity, and thermal conductivity of γ-Y 2Si2O7, a high-temperature polymorph of yttrium disilicate, were investigated. The anisotropic thermal expansions of γ-Y2Si2O7 powders were examined using high-temperature X-ray diffractometer from 300 to 1373 K and the volumetric thermal expansion coefficient is (6.68±0.35) × 10-6 K-1. The linear thermal expansion coefficient of polycrystalline γ-Y2Si2O7 determined by push-rod dilatometer is (3.90±0.4) × 10-6 K-1, being very close to that of silicon nitride and silicon carbide. Besides, γ-Y2Si2O7 displays a low-thermal conductivity, with a κ value measured below 3.0 W·(m·K) -1 at the temperatures above 600 K. The calculated minimum thermal conductivity, κmin, was 1.35 W·(m·K) -1. The unique combination of low thermal expansion coefficient and low-thermal conductivity of γ-Y2Si2O7 renders it a very competitive candidate material for high temperature structural components and environmental/thermal-barrier coatings. The thermal shock resistance of γ-Y2Si2O7 was estimated by quenching dense materials in water from various temperatures and the critical temperature difference, ΔTc, was determined to be 300 K.