134 resultados para Religions (Proposed, universal, etc.)
Resumo:
Railway is one of the most important, reliable and widely used means of transportation, carrying freight, passengers, minerals, grains, etc. Thus, research on railway tracks is extremely important for the development of railway engineering and technologies. The safe operation of a railway track is based on the railway track structure that includes rails, fasteners, pads, sleepers, ballast, subballast and formation. Sleepers are very important components of the entire structure and may be made of timber, concrete, steel or synthetic materials. Concrete sleepers were first installed around the middle of last century and currently are installed in great numbers around the world. Consequently, the design of concrete sleepers has a direct impact on the safe operation of railways. The "permissible stress" method is currently most commonly used to design sleepers. However, the permissible stress principle does not consider the ultimate strength of materials, probabilities of actual loads, and the risks associated with failure, all of which could lead to the conclusion of cost-ineffectiveness and over design of current prestressed concrete sleepers. Recently the limit states design method, which appeared in the last century and has been already applied in the design of buildings, bridges, etc, is proposed as a better method for the design of prestressed concrete sleepers. The limit states design has significant advantages compared to the permissible stress design, such as the utilisation of the full strength of the member, and a rational analysis of the probabilities related to sleeper strength and applied loads. This research aims to apply the ultimate limit states design to the prestressed concrete sleeper, namely to obtain the load factors of both static and dynamic loads for the ultimate limit states design equations. However, the sleepers in rail tracks require different safety levels for different types of tracks, which mean the different types of tracks have different load factors of limit states design equations. Therefore, the core tasks of this research are to find the load factors of the static component and dynamic component of loads on track and the strength reduction factor of the sleeper bending strength for the ultimate limit states design equations for four main types of tracks, i.e., heavy haul, freight, medium speed passenger and high speed passenger tracks. To find those factors, the multiple samples of static loads, dynamic loads and their distributions are needed. In the four types of tracks, the heavy haul track has the measured data from Braeside Line (A heavy haul line in Central Queensland), and the distributions of both static and dynamic loads can be found from these data. The other three types of tracks have no measured data from sites and the experimental data are hardly available. In order to generate the data samples and obtain their distributions, the computer based simulations were employed and assumed the wheel-track impacts as induced by different sizes of wheel flats. A valid simulation package named DTrack was firstly employed to generate the dynamic loads for the freight and medium speed passenger tracks. However, DTrack is only valid for the tracks which carry low or medium speed vehicles. Therefore, a 3-D finite element (FE) model was then established for the wheel-track impact analysis of the high speed track. This FE model has been validated by comparing its simulation results with the DTrack simulation results, and with the results from traditional theoretical calculations based on the case of heavy haul track. Furthermore, the dynamic load data of the high speed track were obtained from the FE model and the distributions of both static and dynamic loads were extracted accordingly. All derived distributions of loads were fitted by appropriate functions. Through extrapolating those distributions, the important parameters of distributions for the static load induced sleeper bending moment and the extreme wheel-rail impact force induced sleeper dynamic bending moments and finally, the load factors, were obtained. Eventually, the load factors were obtained by the limit states design calibration based on reliability analyses with the derived distributions. After that, a sensitivity analysis was performed and the reliability of the achieved limit states design equations was confirmed. It has been found that the limit states design can be effectively applied to railway concrete sleepers. This research significantly contributes to railway engineering and the track safety area. It helps to decrease the failure and risks of track structure and accidents; better determines the load range for existing sleepers in track; better rates the strength of concrete sleepers to support bigger impact and loads on railway track; increases the reliability of the concrete sleepers and hugely saves investments on railway industries. Based on this research, many other bodies of research can be promoted in the future. Firstly, it has been found that the 3-D FE model is suitable for the study of track loadings and track structure vibrations. Secondly, the equations for serviceability and damageability limit states can be developed based on the concepts of limit states design equations of concrete sleepers obtained in this research, which are for the ultimate limit states.
Resumo:
Over the last decade, the majority of existing search techniques is either keyword- based or category-based, resulting in unsatisfactory effectiveness. Meanwhile, studies have illustrated that more than 80% of users preferred personalized search results. As a result, many studies paid a great deal of efforts (referred to as col- laborative filtering) investigating on personalized notions for enhancing retrieval performance. One of the fundamental yet most challenging steps is to capture precise user information needs. Most Web users are inexperienced or lack the capability to express their needs properly, whereas the existent retrieval systems are highly sensitive to vocabulary. Researchers have increasingly proposed the utilization of ontology-based tech- niques to improve current mining approaches. The related techniques are not only able to refine search intentions among specific generic domains, but also to access new knowledge by tracking semantic relations. In recent years, some researchers have attempted to build ontological user profiles according to discovered user background knowledge. The knowledge is considered to be both global and lo- cal analyses, which aim to produce tailored ontologies by a group of concepts. However, a key problem here that has not been addressed is: how to accurately match diverse local information to universal global knowledge. This research conducts a theoretical study on the use of personalized ontolo- gies to enhance text mining performance. The objective is to understand user information needs by a \bag-of-concepts" rather than \words". The concepts are gathered from a general world knowledge base named the Library of Congress Subject Headings. To return desirable search results, a novel ontology-based mining approach is introduced to discover accurate search intentions and learn personalized ontologies as user profiles. The approach can not only pinpoint users' individual intentions in a rough hierarchical structure, but can also in- terpret their needs by a set of acknowledged concepts. Along with global and local analyses, another solid concept matching approach is carried out to address about the mismatch between local information and world knowledge. Relevance features produced by the Relevance Feature Discovery model, are determined as representatives of local information. These features have been proven as the best alternative for user queries to avoid ambiguity and consistently outperform the features extracted by other filtering models. The two attempt-to-proposed ap- proaches are both evaluated by a scientific evaluation with the standard Reuters Corpus Volume 1 testing set. A comprehensive comparison is made with a num- ber of the state-of-the art baseline models, including TF-IDF, Rocchio, Okapi BM25, the deploying Pattern Taxonomy Model, and an ontology-based model. The gathered results indicate that the top precision can be improved remarkably with the proposed ontology mining approach, where the matching approach is successful and achieves significant improvements in most information filtering measurements. This research contributes to the fields of ontological filtering, user profiling, and knowledge representation. The related outputs are critical when systems are expected to return proper mining results and provide personalized services. The scientific findings have the potential to facilitate the design of advanced preference mining models, where impact on people's daily lives.
Resumo:
Process-Aware Information Systems (PAISs) support executions of operational processes that involve people, resources, and software applications on the basis of process models. Process models describe vast, often infinite, amounts of process instances, i.e., workflows supported by the systems. With the increasing adoption of PAISs, large process model repositories emerged in companies and public organizations. These repositories constitute significant information resources. Accurate and efficient retrieval of process models and/or process instances from such repositories is interesting for multiple reasons, e.g., searching for similar models/instances, filtering, reuse, standardization, process compliance checking, verification of formal properties, etc. This paper proposes a technique for indexing process models that relies on their alternative representations, called untanglings. We show the use of untanglings for retrieval of process models based on process instances that they specify via a solution to the total executability problem. Experiments with industrial process models testify that the proposed retrieval approach is up to three orders of magnitude faster than the state of the art.
Resumo:
Government action is essential to increase the healthiness of food environments and reduce obesity, diet-related non-communicable diseases (NCDs), and their related inequalities. This paper proposes a monitoring framework to assess government policies and actions for creating healthy food environments. Recommendations from relevant authoritative organizations and expert advisory groups for reducing obesity and NCDs were examined, and pertinent components were incorporated into a comprehensive framework for monitoring government policies and actions. A Government Healthy Food Environment Policy Index (Food-EPI) was developed, which comprises a ‘policy’ component with seven domains on specific aspects of food environments, and an ‘infrastructure support’ component with seven domains to strengthen systems to prevent obesity and NCDs. These were revised through a week-long consultation process with international experts. Examples of good practice statements are proposed within each domain, and these will evolve into benchmarks established by governments at the forefront of creating and implementing food policies for good health. A rating process is proposed to assess a government's level of policy implementation towards good practice. The Food-EPI will be pre-tested and piloted in countries of varying size and income levels. The benchmarking of government policy implementation has the potential to catalyse greater action to reduce obesity and NCDs.
Resumo:
Private-sector organizations play a critical role in shaping the food environments of individuals and populations. However, there is currently very limited independent monitoring of private-sector actions related to food environments. This paper reviews previous efforts to monitor the private sector in this area, and outlines a proposed approach to monitor private-sector policies and practices related to food environments, and their influence on obesity and non-communicable disease (NCD) prevention. A step-wise approach to data collection is recommended, in which the first (‘minimal’) step is the collation of publicly available food and nutrition-related policies of selected private-sector organizations. The second (‘expanded’) step assesses the nutritional composition of each organization's products, their promotions to children, their labelling practices, and the accessibility, availability and affordability of their products. The third (‘optimal’) step includes data on other commercial activities that may influence food environments, such as political lobbying and corporate philanthropy. The proposed approach will be further developed and piloted in countries of varying size and income levels. There is potential for this approach to enable national and international benchmarking of private-sector policies and practices, and to inform efforts to hold the private sector to account for their role in obesity and NCD prevention.
Resumo:
Age trajectories for personality traits are known to be similar across cultures. To address whether stereotypes of age groups reflect these age-related changes in personality, we asked participants in 26 countries (N = 3,323) to rate typical adolescents, adults, and old persons in their own country. Raters across nations tended to share similar beliefs about different age groups; adolescents were seen as impulsive, rebellious, undisciplined, preferring excitement and novelty, whereas old people were consistently considered lower on impulsivity, activity, antagonism, and Openness. These consensual age group stereotypes correlated strongly with published age differences on the five major dimensions of personality and most of 30 specific traits, using as criteria of accuracy both self-reports and observer ratings, different survey methodologies, and data from up to 50 nations. However, personal stereotypes were considerably less accurate, and consensual stereotypes tended to exaggerate differences across age groups.
Resumo:
Topic modelling, such as Latent Dirichlet Allocation (LDA), was proposed to generate statistical models to represent multiple topics in a collection of documents, which has been widely utilized in the fields of machine learning and information retrieval, etc. But its effectiveness in information filtering is rarely known. Patterns are always thought to be more representative than single terms for representing documents. In this paper, a novel information filtering model, Pattern-based Topic Model(PBTM) , is proposed to represent the text documents not only using the topic distributions at general level but also using semantic pattern representations at detailed specific level, both of which contribute to the accurate document representation and document relevance ranking. Extensive experiments are conducted to evaluate the effectiveness of PBTM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model achieves outstanding performance.
Resumo:
The proposed reforms to the youth justice system in Queensland are premised on the assumption that offending by young people is increasing. We noted (Carrington, Dwyer, Hutchinson and Richards 2012, 8) in a recent submission about the boot camps legislation that: "Statistics suggest that this concern is not warranted. Certainly studies show that ‘rates per 100,000 juveniles in detention in Queensland have been relatively stable compared with the national trend’ (Richards 2011) and that rates of detention of child offenders have declined generally in Australia over the last three decades. Youth offending statistics are affected by the diversion options used by the police, as well as by the numbers and levels of policing, and any special strategies such as Operation Colossus in the northern part of the state. ‘Community concern’ about crime does not always reflect the true rates of crime across Queensland. Policy should be based on valid evidence, not on ‘community concern’. With stable numbers of young people being detained in Australia, the research clearly suggests that youth offending is not escalating."...
Resumo:
Background Anxiety, depressive and substance use disorders account for three quarters of the disability attributed to mental disorders and frequently co-occur. While programs for the prevention and reduction of symptoms associated with (i) substance use and (ii) mental health disorders exist, research is yet to determine if a combined approach is more effective. This paper describes the study protocol of a cluster randomised controlled trial to evaluate the effectiveness of the CLIMATE Schools Combined intervention, a universal approach to preventing substance use and mental health problems among adolescents. Methods/design Participants will consist of approximately 8400 students aged 13 to 14-years-old from 84 secondary schools in New South Wales, Western Australia and Queensland, Australia. The schools will be cluster randomised to one of four groups; (i) CLIMATE Schools Combined intervention; (ii) CLIMATE Schools - Substance Use; (iii) CLIMATE Schools - Mental Health, or (iv) Control (Health and Physical Education as usual). The primary outcomes of the trial will be the uptake and harmful use of alcohol and other drugs, mental health symptomatology and anxiety, depression and substance use knowledge. Secondary outcomes include substance use related harms, self-efficacy to resist peer pressure, general disability, and truancy. The link between personality and substance use will also be examined. Discussion Compared to students who receive the universal CLIMATE Schools - Substance Use, or CLIMATE Schools - Mental Health or the Control condition (who received usual Health and Physical Education), we expect students who receive the CLIMATE Schools Combined intervention to show greater delays to the initiation of substance use, reductions in substance use and mental health symptoms, and increased substance use and mental health knowledge
Resumo:
Topic modelling has been widely used in the fields of information retrieval, text mining, machine learning, etc. In this paper, we propose a novel model, Pattern Enhanced Topic Model (PETM), which makes improvements to topic modelling by semantically representing topics with discriminative patterns, and also makes innovative contributions to information filtering by utilising the proposed PETM to determine document relevance based on topics distribution and maximum matched patterns proposed in this paper. Extensive experiments are conducted to evaluate the effectiveness of PETM by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model significantly outperforms both state-of-the-art term-based models and pattern-based models.
Resumo:
Many mature term-based or pattern-based approaches have been used in the field of information filtering to generate users’ information needs from a collection of documents. A fundamental assumption for these approaches is that the documents in the collection are all about one topic. However, in reality users’ interests can be diverse and the documents in the collection often involve multiple topics. Topic modelling, such as Latent Dirichlet Allocation (LDA), was proposed to generate statistical models to represent multiple topics in a collection of documents, and this has been widely utilized in the fields of machine learning and information retrieval, etc. But its effectiveness in information filtering has not been so well explored. Patterns are always thought to be more discriminative than single terms for describing documents. However, the enormous amount of discovered patterns hinder them from being effectively and efficiently used in real applications, therefore, selection of the most discriminative and representative patterns from the huge amount of discovered patterns becomes crucial. To deal with the above mentioned limitations and problems, in this paper, a novel information filtering model, Maximum matched Pattern-based Topic Model (MPBTM), is proposed. The main distinctive features of the proposed model include: (1) user information needs are generated in terms of multiple topics; (2) each topic is represented by patterns; (3) patterns are generated from topic models and are organized in terms of their statistical and taxonomic features, and; (4) the most discriminative and representative patterns, called Maximum Matched Patterns, are proposed to estimate the document relevance to the user’s information needs in order to filter out irrelevant documents. Extensive experiments are conducted to evaluate the effectiveness of the proposed model by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model significantly outperforms both state-of-the-art term-based models and pattern-based models
Resumo:
Hot spot identification (HSID) aims to identify potential sites—roadway segments, intersections, crosswalks, interchanges, ramps, etc.—with disproportionately high crash risk relative to similar sites. An inefficient HSID methodology might result in either identifying a safe site as high risk (false positive) or a high risk site as safe (false negative), and consequently lead to the misuse the available public funds, to poor investment decisions, and to inefficient risk management practice. Current HSID methods suffer from issues like underreporting of minor injury and property damage only (PDO) crashes, challenges of accounting for crash severity into the methodology, and selection of a proper safety performance function to model crash data that is often heavily skewed by a preponderance of zeros. Addressing these challenges, this paper proposes a combination of a PDO equivalency calculation and quantile regression technique to identify hot spots in a transportation network. In particular, issues related to underreporting and crash severity are tackled by incorporating equivalent PDO crashes, whilst the concerns related to the non-count nature of equivalent PDO crashes and the skewness of crash data are addressed by the non-parametric quantile regression technique. The proposed method identifies covariate effects on various quantiles of a population, rather than the population mean like most methods in practice, which more closely corresponds with how black spots are identified in practice. The proposed methodology is illustrated using rural road segment data from Korea and compared against the traditional EB method with negative binomial regression. Application of a quantile regression model on equivalent PDO crashes enables identification of a set of high-risk sites that reflect the true safety costs to the society, simultaneously reduces the influence of under-reported PDO and minor injury crashes, and overcomes the limitation of traditional NB model in dealing with preponderance of zeros problem or right skewed dataset.
Resumo:
Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc. . .Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers. Numerous rover navigation techniques have been proposed, each of them being suited to a particular environment context (e.g. path following, obstacle avoidance in more or less cluttered environments, rough terrain traverses...). However, seldom contributions in the literature tackle the problem of selecting autonomously the most suited mode [3]. Most of the existing work is indeed devoted to the passive analysis of a single navigation mode, as in [2]. Fault detection is of course essential: one can imagine that a proper monitoring of the Mars Exploration Rover Opportunity could have avoided the rover to be stuck during several weeks in a dune, by detecting non-nominal behavior of some parameters. But the ability to recover the anticipated problem by switching to a better suited navigation mode would bring higher autonomy abilities, and therefore a better overall efficiency. We propose here a probabilistic framework to achieve this, which fuses environment related and robot related information in order to actively control the rover operations.
Resumo:
Numerous studies have documented subtle but consistent sex differences in self-reports and observer-ratings of five-factor personality traits, and such effects were found to show well-defined developmental trajectories and remarkable similarity across nations. In contrast, very little is known about perceived gender differences in five-factor traits in spite of their potential implications for gender biases at the interpersonal and societal level. In particular, it is not clear how perceived gender differences in five-factor personality vary across age groups and national contexts and to what extent they accurately reflect assessed sex differences in personality. To address these questions, we analyzed responses from 3,323 individuals across 26 nations (mean age = 22.3 years, 31% male) who were asked to rate the five-factor personality traits of typical men or women in three age groups (adolescent, adult, and older adult) in their respective nations. Raters perceived women as slightly higher in openness, agreeableness, and conscientiousness as well as some aspects of extraversion and neuroticism. Perceived gender differences were fairly consistent across nations and target age groups and mapped closely onto assessed sex differences in self- and observer-rated personality. Associations between the average size of perceived gender differences and national variations in sociodemographic characteristics, value systems, or gender equality did not reach statistical significance. Findings contribute to our understanding of the underlying mechanisms of gender stereotypes of personality and suggest that perceptions of actual sex differences may play a more important role than culturally based gender roles and socialization processes.