91 resultados para Random Regret Minimization
Resumo:
Background Random Breath Testing (RBT) has proven to be a cornerstone of enforcement attempts to deter (as well as apprehend) motorists from drink driving in Queensland (Australia) for decades. However, scant published research has examined the relationship between the frequency of implementing RBT activities and subsequent drink driving apprehension rates across time. Aim This study aimed to examine the prevalence of apprehending drink drivers in Queensland over a 12 year period. It was hypothesised that an increase in breath testing rates would result in a corresponding decrease in the frequency of drink driving apprehension rates over time, which would reflect general deterrent effects. Method The Queensland Police Service provided RBT data that was analysed. Results Between the 1st of January 2000 and 31st of December 2011, 35,082,386 random breath tests (both mobile and stationary) were conducted in Queensland, resulting in 248,173 individuals being apprehended for drink driving offences. A total of 342,801 offences were recorded during this period, representing an intercept rate of .96. Of these offences, 276,711 (80.72%) were recorded against males and 66,024 (19.28%) offences committed by females. The most common drink driving offence was between 0.05 and 0.08 BAC limit. The largest proportion of offences was detected on the weekends, with Saturdays (27.60%) proving to be the most common drink driving night followed by Sundays (21.41%). The prevalence of drink driving detection rates rose steadily across time, peaking in 2008 and 2009, before slightly declining. This decline was observed across all Queensland regions and any increase in annual figures was due to new offence types being developed. Discussion This paper will further outline the major findings of the study in regards to tailoring RBT operations to increase detection rates as well as improve the general deterrent effect of the initiative.
Resumo:
Product reviews are the foremost source of information for customers and manufacturers to help them make appropriate purchasing and production decisions. Natural language data is typically very sparse; the most common words are those that do not carry a lot of semantic content, and occurrences of any particular content-bearing word are rare, while co-occurrences of these words are rarer. Mining product aspects, along with corresponding opinions, is essential for Aspect-Based Opinion Mining (ABOM) as a result of the e-commerce revolution. Therefore, the need for automatic mining of reviews has reached a peak. In this work, we deal with ABOM as sequence labelling problem and propose a supervised extraction method to identify product aspects and corresponding opinions. We use Conditional Random Fields (CRFs) to solve the extraction problem and propose a feature function to enhance accuracy. The proposed method is evaluated using two different datasets. We also evaluate the effectiveness of feature function and the optimisation through multiple experiments.
Resumo:
The chemokine receptor CCR5 contains seven transmembrane-spanning domains. It binds chemokines and acts as co-receptor for macrophage (m)-tropic (or R5) strains of HIV-1. Monoclonal antibodies (mAb) to CCR5, 3A9 and 5C7, were used for biopanning a nonapeptide cysteine (C)-constrained phage-displayed random peptide library to ascertain contact residues and define tertiary structures of possible epitopes on CCR5. Reactivity of antibodies with phagotopes was established by enzyme-linked immunosorbent assay (ELISA). mAb 3A9 identified a phagotope C-HASIYDFGS-C (3A9/1), and 5C7 most frequently identified C-PHWLRDLRV-C (5C7/1). Corresponding peptides were synthesized. Phagotopes and synthetic peptides reacted in ELISA with corresponding antibodies and synthetic peptides inhibited antibody binding to the phagotopes. Reactivity by immunofluorescence of 3A9 with CCR5 was strongly inhibited by the corresponding peptide. Both mAb 3A9 and 5C7 reacted similarly with phagotopes and the corresponding peptide selected by the alternative mAb. The sequences of peptide inserts of phagotopes could be aligned as mimotopes of the sequence of CCR5. For phage 3A9/1, the motif SIYD aligned to residues at the N terminus and FG to residues on the first extracellular loop; for 5C7/1, residues at the N terminus, first extracellular loop, and possibly the third extracellular loop could be aligned and so would contribute to the mimotope. The synthetic peptides corresponding to the isolated phagotopes showed a CD4-dependent reactivity with gp120 of a primary, m-tropic HIV-1 isolate. Thus reactivity of antibodies raised to CCR5 against phage-displayed peptides defined mimotopes that reflect binding sites for these antibodies and reveal a part of the gp120 binding sites on CCR5.
Resumo:
Ross River virus (RRV) is the predominant cause of epidemic polyarthritis in Australia, yet the antigenic determinants are not well defined. We aimed to characterize epitope(s) on RRV-E2 for a panel of monoclonal antibodies (MAbs) that recognize overlapping conformational epitopes on the E2 envelope protein of RRV and that neutralize virus infection of cells in vitro. Phage-displayed random peptide libraries were probed with the MAbs T1E7, NB3C4, and T10C9 using solution-phase and solid-phase biopanning methods. The peptides VSIFPPA and KTAISPT were selected 15 and 6 times, respectively, by all three of the MAbs using solution-phase biopanning. The peptide LRLPPAP was selected 8 times by NB3C4 using solid-phase biopanning; this peptide shares a trio of amino acids with the peptide VSIFPPA. Phage that expressed the peptides VSIFPPA and LRLPPAP were reactive with T1E7 and/or NB3C4, and phage that expressed the peptides VSIFPPA, LRLPPAP, and KTAISPT partially inhibited the reactivity of T1E7 with RRV. The selected peptides resemble regions of RRV-E2 adjacent to sites mutated in neutralization escape variants of RRV derived by culture in the presence of these MAbs (E2 210-219 and 238-245) and an additional region of E2 172-182. Together these sites represent a conformational epitope of E2 that is informative of cellular contact sites on RRV.
Resumo:
Biopanning of phage-displayed random peptide libraries is a powerful technique for identifying peptides that mimic epitopes (mimotopes) for monoclonal antibodies (mAbs). However, peptides derived using polyclonal antisera may represent epitopes for a diverse range of antibodies. Hence following screening of phage libraries with polyclonal antisera, including autoimmune disease sera, a procedure is required to distinguish relevant from irrelevant phagotopes. We therefore applied the multiple sequence alignment algorithm PILEUP together with a matrix for scoring amino acid substitutions based on physicochemical properties to generate guide trees depicting relatedness of selected peptides. A random heptapeptide library was biopanned nine times using no selecting antibodies, immunoglobulin G (IgG) from sera of subjects with autoimmune diseases (primary biliary cirrhosis (PBC) and type 1 diabetes) and three murine ascites fluids that contained mAbs to overlapping epitope(s) on the Ross River Virus envelope protein 2. Peptides randomly sampled from the library were distributed throughout the guide tree of the total set of peptides whilst many of the peptides derived in the absence of selecting antibody aligned to a single cluster. Moreover peptides selected by different sources of IgG aligned to separate clusters, each with a different amino acid motif. These alignments were validated by testing all of the 53 phagotopes derived using IgG from PBC sera for reactivity by capture ELISA with antibodies affinity purified on the E2 subunit of the pyruvate dehydrogenase complex (PDC-E2), the major autoantigen in PBC: only those phagotopes that aligned to PBC-associated clusters were reactive. Hence the multiple sequence alignment procedure discriminates relevant from irrelevant phagotopes and thus a major difficulty with biopanning phage-displayed random peptide libraries with polyclonal antibodies is surmounted.
Resumo:
Antibody screening of phage-displayed random peptide libraries to identify mimotopes of conformational epitopes is promising. However, because interpretations can be difficult, an exemplary system has been used in the present study to investigate whether variation in the peptide sequences of selected phagotopes corresponded with variation in immunoreactivity. The phagotopes, derived using a well-characterized monoclonal antibody, CII-C1, to a known conformational epitope on type II collagen, C1, were tested by direct and inhibition ELISA for reactivity with CII-C1. A multiple sequence alignment algorithm, PILEUP, was used to sort the peptides expressed by the phagotopes into clusters. A model was prepared of the C1 epitope on type II collagen. The 12 selected phagotopes reacted with CII-C1 by both direct ELISA (titres from < 100-11 200) and inhibition ELISA (20-100% inhibition); the reactivity varied according to the peptide sequence and assay format. The differences in reactivity between the phagotopes were mostly in accord with the alignment, by PILEUP, of the peptide sequences. The finding that the phagotopes functionally mimicked the C1 epitope on collagen was validated in that amino acids RRL at the amino terminal of many of the peptides were topographically demonstrable on the model of the C1 epitope. Notably, one phagotope that expressed the widely divergent peptide C-IAPKRHNSA-C also mimicked the C1 epitope, as judged by reactivity in each of the assays used: these included cross-inhibition of CII-C1 reactivity with each of the other phagotopes and inhibition by a synthetic peptide corresponding to that expressed by the most frequently selected phagotope, RRLPFGSQM. Thus, it has been demonstrated that multiple phage-displayed peptides can mimic the same epitope and that observed immunoreactivity of selected phagotopes with the selecting mAb can depend on the primary sequence of the expressed peptide and also on the assay format used.
Resumo:
Background Multilevel and spatial models are being increasingly used to obtain substantive information on area-level inequalities in cancer survival. Multilevel models assume independent geographical areas, whereas spatial models explicitly incorporate geographical correlation, often via a conditional autoregressive prior. However the relative merits of these methods for large population-based studies have not been explored. Using a case-study approach, we report on the implications of using multilevel and spatial survival models to study geographical inequalities in all-cause survival. Methods Multilevel discrete-time and Bayesian spatial survival models were used to study geographical inequalities in all-cause survival for a population-based colorectal cancer cohort of 22,727 cases aged 20–84 years diagnosed during 1997–2007 from Queensland, Australia. Results Both approaches were viable on this large dataset, and produced similar estimates of the fixed effects. After adding area-level covariates, the between-area variability in survival using multilevel discrete-time models was no longer significant. Spatial inequalities in survival were also markedly reduced after adjusting for aggregated area-level covariates. Only the multilevel approach however, provided an estimation of the contribution of geographical variation to the total variation in survival between individual patients. Conclusions With little difference observed between the two approaches in the estimation of fixed effects, multilevel models should be favored if there is a clear hierarchical data structure and measuring the independent impact of individual- and area-level effects on survival differences is of primary interest. Bayesian spatial analyses may be preferred if spatial correlation between areas is important and if the priority is to assess small-area variations in survival and map spatial patterns. Both approaches can be readily fitted to geographically enabled survival data from international settings
Resumo:
In continuum one-dimensional space, a coupled directed continuous time random walk model is proposed, where the random walker jumps toward one direction and the waiting time between jumps affects the subsequent jump. In the proposed model, the Laplace-Laplace transform of the probability density function P(x,t) of finding the walker at position at time is completely determined by the Laplace transform of the probability density function φ(t) of the waiting time. In terms of the probability density function of the waiting time in the Laplace domain, the limit distribution of the random process and the corresponding evolving equations are derived.
Resumo:
The growing interest in co-created reading experiences in both digital and print formats raises interesting questions for creative writers who work in the space of interactive fiction. This essay argues that writers have not abandoned experiments with co-creation in print narratives in favour of the attractions of the digital environment, as might be assumed by the discourse on digital development. Rather, interactive print narratives, in particular ‘reader-assembled narratives’ demonstrate a rich history of experimentation and continue to engage writers who wish to craft individual reading experiences for readers and to experiment with their own creative process as writers. The reader-assembled narrative has been used for many different reasons and for some writers, such as BS Johnson it is a method of problem solving, for others, like Robert Coover, it is a way to engage the reader in a more playful sense. Authors such as Marc Saporta, BS Johnson, and Robert Coover have engaged with this type of narrative play. This examination considers the narrative experimentation of these authors as a way of offering insights into creative practice for contemporary creative writers.
Resumo:
Submarine groundwater discharge (SGD) is an integral part of the hydrological cycle and represents an important aspect of land-ocean interactions. We used a numerical model to simulate flow and salt transport in a nearshore groundwater aquifer under varying wave conditions based on yearlong random wave data sets, including storm surge events. The results showed significant flow asymmetry with rapid response of influxes and retarded response of effluxes across the seabed to the irregular wave conditions. While a storm surge immediately intensified seawater influx to the aquifer, the subsequent return of intruded seawater to the sea, as part of an increased SGD, was gradual. Using functional data analysis, we revealed and quantified retarded, cumulative effects of past wave conditions on SGD including the fresh groundwater and recirculating seawater discharge components. The retardation was characterized well by a gamma distribution function regardless of wave conditions. The relationships between discharge rates and wave parameters were quantifiable by a regression model in a functional form independent of the actual irregular wave conditions. This statistical model provides a useful method for analyzing and predicting SGD from nearshore unconfined aquifers affected by random waves
Resumo:
Random walk models are often used to interpret experimental observations of the motion of biological cells and molecules. A key aim in applying a random walk model to mimic an in vitro experiment is to estimate the Fickian diffusivity (or Fickian diffusion coefficient),D. However, many in vivo experiments are complicated by the fact that the motion of cells and molecules is hindered by the presence of obstacles. Crowded transport processes have been modeled using repeated stochastic simulations in which a motile agent undergoes a random walk on a lattice that is populated by immobile obstacles. Early studies considered the most straightforward case in which the motile agent and the obstacles are the same size. More recent studies considered stochastic random walk simulations describing the motion of an agent through an environment populated by obstacles of different shapes and sizes. Here, we build on previous simulation studies by analyzing a general class of lattice-based random walk models with agents and obstacles of various shapes and sizes. Our analysis provides exact calculations of the Fickian diffusivity, allowing us to draw conclusions about the role of the size, shape and density of the obstacles, as well as examining the role of the size and shape of the motile agent. Since our analysis is exact, we calculateDdirectly without the need for random walk simulations. In summary, we find that the shape, size and density of obstacles has a major influence on the exact Fickian diffusivity. Furthermore, our results indicate that the difference in diffusivity for symmetric and asymmetric obstacles is significant.
Resumo:
• In December 1986 funds were approved to double the intensity of random breath testing (RBT) and provide publicity support for police efforts. These changes were considered necessary to make RBT effective. • RBT methods were changed in the metropolitan area to enable block testing (pulling over a block of traffic rather than one or two cars), deployment of police to cut off escape routes, and testing by traffic patrols in all police subdivisions. Additional operators were trained for country RBT. • A publicity campaign was developed, aimed mainly at male drivers aged 18-50. The campaign consisted of the “cardsharp” television commercials, radio commercials, newspaper articles, posters and pamphlets. • Increased testing and the publicity campaigns were launched on 10 April 1987. • Police tests increased by 92.5% in May – December 1987, compared with the same period in the previous four years. • The detection rate for drinking drivers picked up by police who were cutting off escape routes was comparatively high, indicating that drivers were attempting to avoid RBT, and that this police method was effective at detecting these drivers. • A telephone survey indicated that drivers were aware of the messages of the publicity campaign. • The telephone survey also indicated that the target group had been exposed to high levels of RBT, as planned, and that fear of apprehension was the major factor deterring them from drink driving. • A roadside survey of driver blood alcohol concentrations (BACs) by the University of Adelaide’s Road Accident Research Unit (RARU) showed that, between 10p.m. and 3a.m., the proportion of drivers in Adelaide with a BAC greater than or equal to 0/08 decreased by 42%. • Drivers under 21 were identified as a possible problem area. • Fatalities in the twelve month period commencing May 1987 decreased by 18% in comparison with the previous twelve month period, and by 13% in comparison with the average of the previous two twelve month periods (commencing May 1985 and May 1986). There are indications that this trend is continuing. • It is concluded that the increase in RBT, plus publicity, was successful in achieving its aims of reductions in drink driving and accidents.
Resumo:
Random breath testing (RBT) was introduced in South Australia in 1981 with the intention of reducing the incidence of accidents involving alcohol. In April 1985, a Select Committee of the Upper House which had been established to “review the operation of random breath testing in this State and any other associated matters and report accordingly” presented its report. After consideration of this report, the Government introduced extensive amendments to those sections of the Motor Vehicles Act (MVA) and Road Traffic Act (RTA) which deal with RBT and drink driving penalties. The amended section 47da of the RTA requires that: “(5) The Minister shall cause a report to be prepared within three months after the end of each calendar year on the operation and effectiveness of this section and related sections during that calendar year. (6) The Minister shall, within 12 sitting days after receipt of a report under subsection (5), cause copies of the report to be laid before each House of Parliament.” This is the first such report. Whilst it deals with RBT over a full year, the changed procedures and improved flexibility allowed by the revision to the RTA were only introduced late in 1985 and then only to the extent that the existing resources would allow.
Resumo:
Deep convolutional neural networks (DCNNs) have been employed in many computer vision tasks with great success due to their robustness in feature learning. One of the advantages of DCNNs is their representation robustness to object locations, which is useful for object recognition tasks. However, this also discards spatial information, which is useful when dealing with topological information of the image (e.g. scene labeling, face recognition). In this paper, we propose a deeper and wider network architecture to tackle the scene labeling task. The depth is achieved by incorporating predictions from multiple early layers of the DCNN. The width is achieved by combining multiple outputs of the network. We then further refine the parsing task by adopting graphical models (GMs) as a post-processing step to incorporate spatial and contextual information into the network. The new strategy for a deeper, wider convolutional network coupled with graphical models has shown promising results on the PASCAL-Context dataset.