82 resultados para RNA later
Resumo:
Background Children’s sleep problems and self-regulation problems have been independently associated with poorer adjustment to school, but there has been limited exploration of longitudinal early childhood profiles that include both indicators. Aims This study explores the normative developmental pathway for sleep problems and self-regulation across early childhood, and investigates whether departure from the normative pathway is associated with later social-emotional adjustment to school. Sample This study involved 2880 children participating in the Growing Up in Australia: The Longitudinal Study of Australian Children (LSAC) – Infant Cohort from Wave 1 (0-1 years) to Wave 4 (6-7 years). Method Mothers reported on children’s sleep problems, emotional, and attentional self-regulation at three time points from birth to 5 years. Teachers reported on children’s social-emotional adjustment to school at 6-7 years. Latent profile analysis was used to establish person-centred longitudinal profiles. Results Three profiles were found. The normative profile (69%) had consistently average or higher emotional and attentional regulation scores and sleep problems that steadily reduced from birth to 5. The remaining 31% of children were members of two non-normative self-regulation profiles, both characterised by escalating sleep problems across early childhood and below mean self-regulation. Non-normative group membership was associated with higher teacher-reported hyperactivity and emotional problems, and poorer classroom self-regulation and prosocial skills. Conclusion Early childhood profiles of self-regulation that include sleep problems offer a way to identify children at risk of poor school adjustment. Children with escalating early childhood sleep problems should be considered an important target group for school transition interventions.
Resumo:
Increasing salinity levels in freshwater and coastal environments caused by sea level rise linked to climate change is now recognized to be a major factor that can impact fish growth negatively, especially for freshwater teleost species. Striped catfish (Pangasianodon hypophthalmus) is an important freshwater teleost that is now widely farmed across the Mekong River Delta in Vietnam. Understanding the basis for tolerance and adaptation to raised environmental salinity conditions can assist the regional culture industry to mitigate predicted impacts of climate change across this region. Attempt of next generation sequencing using the ion proton platform results in more than 174 million raw reads from three tissue libraries (gill, kidney and intestine). Reads were filtered and de novo assembled using a variety of assemblers and then clustered together to generate a combined reference transcriptome. Downstream analysis resulted in a final reference transcriptome that contained 60,585 transcripts with an N50 of 683 bp. This resource was further annotated using a variety of bioinformatics databases, followed by differential gene expression analysis that resulted in 3062 transcripts that were differentially expressed in catfish samples raised under two experimental conditions (0 and 15 ppt). A number of transcripts with a potential role in salinity tolerance were then classified into six different functional gene categories based on their gene ontology assignments. These included; energy metabolism, ion transportation, detoxification, signal transduction, structural organization and detoxification. Finally, we combined the data on functional salinity tolerance genes into a hypothetical schematic model that attempted to describe potential relationships and interactions among target genes to explain the molecular pathways that control adaptive salinity responses in P. hypophthalmus. Our results indicate that P. hypophthalmus exhibit predictable plastic regulatory responses to elevated salinity by means of characteristic gene expression patterns, providing numerous candidate genes for future investigations.
Resumo:
The rapid uptake of transcriptomic approaches in freshwater ecology has seen a wealth of data produced concerning the ways in which organisms interact with their environment on a molecular level. Typically, such studies focus either at the community level and so don’t require species identifications, or on laboratory strains of known species identity or natural populations of large, easily identifiable taxa. For chironomids, impediments still exist for applying these technologies to natural populations because they are small-bodied and often require time-consuming secondary sorting of stream material and morphological voucher preparation to confirm species diagnosis. These procedures limit the ability to maintain RNA quantity and quality in such organisms because RNA degrades rapidly and gene expression can be altered rapidly in organisms; thereby limiting the inclusion of such taxa in transcriptomic studies. Here, we demonstrate that these limitations can be overcome and outline an optimised protocol for collecting, sorting and preserving chironomid larvae that enables retention of both morphological vouchers and RNA for subsequent transcriptomics purposes. By ensuring that sorting and voucher preparation are completed within <4 hours after collection and that samples are kept cold at all times, we successfully retained both RNA and morphological vouchers from all specimens. Although not prescriptive in specific methodology, we anticipate that this paper will assist in promoting transcriptomic investigations of the sublethal impact on chironomid gene expression of changes to aquatic environments.
Resumo:
Recognized around the world as a powerful beacon for freedom, hope, and opportunity, the Statue of Liberty's light is not just metaphorical: her dramatic illumination is a perfect example of American ingenuity and engineering. Since the statue's installation in New York Harbor in 1886, lighting engineers and designers had struggled to illuminate the 150-foot copper-clad monument in a manner becoming an American icon. It took the thoughtful and creative approach of Howard Brandston-a legend in his own right-to solve this lighting challenge. In 1984, the designer was asked to give the statue a much-needed lighting makeover in preparation for its centennial. In order to avoid the shortcomings of previous attempts, he studied the monument from every angle and in all lighting conditions, discovering that it looked best in the light of dawn. Brandston determined that he would need 'one lamp to mimic the morning sun and one lamp to mimic the morning sky.' Learning that no existing lamps could simulate these conditions, Brandston partnered with General Electric to develop two new metal halide products. With only a short time for R&D, a team of engineers at GE's Nela Park laboratories assembled a 'top secret' testing room dedicated to the Statue of Liberty project. After nearly two years of work to perfect the new lamps, the 'dawn's early light' effect was finally achieved just days before the centennial celebrations were to take place in 1986. 'It was truly a labor of love,' he recalls.
Resumo:
Learning in older age is associated with a wide range of benefits including increases in skills, social interactions, self-satisfaction, coping ability, enjoyment, and resilience to age-related changes in the brain. It is also recognized as being a fundamental component of active ageing and if active ageing objectives are to be met for the growing ageing population, barriers to learning for this group need to be fully understood so that they can be properly addressed. This paper reports on findings from a study aimed at determining the degree that structural factors deter older people aged 55 years and older from engaging in learning activities relative to other factors, based on survey (n=421) and interview (n=40) data. Quantitative and qualitative analyses revealed that factors related to educational institutions as well as infrastructure were commonly cited as barriers to participation in learning. The implications of these and other findings are discussed.
Resumo:
Horizontal gene transfer (HGT) is known to be a major force in genome evolution. The acquisition of genes from viruses by eukaryotic genomes is a well-studied example of HGT, including rare cases of non-retroviral RNA virus integration. The present study describes the integration of cucumber mosaic virus RNA-1 into soybean genome. After an initial metatranscriptomic analysis of small RNAs derived from soybean, the de novo assembly resulted a 3029-nt contig homologous to RNA-1. The integration of this sequence in the soybean genome was confirmed by DNA deep sequencing. The locus where the integration occurred harbors the full RNA-1 sequence followed by the partial sequence of an endogenous mRNA and another sequence of RNA-1 as an inverted repeat and allowing the formation of a hairpin structure. This region recombined into a retrotransposon located inside an exon of a soybean gene. The nucleotide similarity of the integrated sequence compared to other Cucumber mosaic virus sequences indicates that the integration event occurred recently. We described a rare event of non-retroviral RNA virus integration in soybean that leads to the production of a double-stranded RNA in a similar fashion to virus resistance RNAi plants.