88 resultados para Quantitative rt-pcr
Resumo:
Gemcitabine is indicated in combination with cisplatin as first-line therapy for solid tumours including non-small cell lung cancer (NSCLC), bladder cancer and mesothelioma. Gemcitabine is an analogue of pyrimidine cytosine and functions as an anti-metabolite. Structurally, however, gemcitabine has similarities to 5-aza-2-deoxycytidine (decitabine/Dacogen®), a DNA methyltransferase inhibitor (DNMTi). NSCLC, mesothelioma and prostate cancer cell lines were treated with decitabine and gemcitabine. Reactivation of epigenetically silenced genes was examined by RT-PCR/qPCR. DNA methyltransferase activity in nuclear extracts and recombinant proteins was measured using a DNA methyltransferase assay, and alterations in DNA methylation status were examined using methylation-specific PCR (MS-PCR) and pyrosequencing. We observe a reactivation of several epigenetically silenced genes including GSTP1, IGFBP3 and RASSF1A. Gemcitabine functionally inhibited DNA methyltransferase activity in both nuclear extracts and recombinant proteins. Gemcitabine dramatically destabilised DNMT1 protein. However, DNA CpG methylation was for the most part unaffected by gemcitabine. In conclusion, gemcitabine both inhibits and destabilises DNA methyltransferases and reactivates epigenetically silenced genes having activity equivalent to decitabine at concentrations significantly lower than those achieved in the treatment of patients with solid tumours. This property may contribute to the anticancer activity of gemcitabine.
Resumo:
Drosophila melanogaster, along with all insects and the vertebrates, lacks an RdRp gene. We created transgenic strains of Drosophila melanogaster in which the rrf-1 or ego-1 RdRp genes from C. elegans were placed under the control of the yeast GAL4 upstream activation sequence. Activation of the gene was performed by crossing these lines to flies carrying the GAL4 transgene under the control of various Drosophila enhancers. RT-PCR confirmed the successful expression of each RdRp gene. The resulting phenotypes indicated that introduction of the RdRp genes had no effect on D. melanogaster morphological development. © 2010 Springer Science+Business Media B.V.
Resumo:
GPV is a Chinese serotype isolate of barley yellow dwarf virus (BYDV) that has no reaction with antiserum of MAV, PAV, SGV, RPV and RMV The sequence of the coat protein (CP) of GPV isolate of BYDV was identified and its amino acid sequence was deduced. The coding region for the putative GPV CP is 603 bases nucleotides and encodes a Mr 22 218 (22 ku) protein. The same as MAV, PAV and RPV, GPV contained a second ORF within the coat protein coding region. This protein of 17 024 Mr (17 ku) is thought to correspond to the Virion protein genome linked (Vpg). Sequence comparisons of the CP coding region between the GPV isolate of BYDV and other isolates of BYDV have been done. The nucleotide and amino acid sequence homology of GPV has a greater identity to the sequence of RPV than those of PAV and MAV. The GPV CP sequence stored 83.7% of nucleotide similarity and 77.5% of deduced amino acid similarity, whereas that of the PAV and MAV shared 56.9%, 53.2% and 44.1%, 43.8% respectively. According to BYDV-GPV CP sequence, two primers were designed. The cDNA of CP was produced by RT-PCR. Full-length cDNA of CP was inserted into plasmid to construct expression plasmids named pPPI1, pPPI2 and pPPI5 based on different promoters. The recombinant plasmids were identified by using α-32P-dATP labelled CP probe, α-32P-ATP labelled GPV RNA probe and sequencing to confirm real GPV CP gene cDNA in plasmids.
Resumo:
Successful control of sexually transmitted diseases (STDs) through vaccination will require the development of vaccine strategies that target protective immunity to both the female and male reproductive tracts (MRT). In the male, the immune privileged nature of the male reproductive tract provides a barrier to entry of serum immunoglobulins into the male reproductive ducts, thereby preventing the induction of protective immunity using conventional injectable vaccination techniques. In this study we investigated the potential of intranasal (IN) immunization to elicit anti-chlamydial immunity in BALB/c male mice. Intranasal immunization with Chlamydia muridarum major outer membrane protein (MOMP) admixed with cholera toxin (CT) resulted in high levels of MOMP-specific IgA in prostatic fluids (PF) and MOMP-specific IgA-secreting cells in the prostate. Prostatic fluid IgA inhibited in vitro infection of McCoy cells with C. muridarum. Using RT-PCR we also show that mRNA for the polymeric immunoglobulin receptor (PIgR), which transports IgA across mucosal epithelia, is expressed only in the prostate but not in other regions of the male reproductive ducts upstream of the prostate. These data suggest that using intranasal immunization to target IgA to the prostate may protect males against STDs while at the same time maintaining the state of immune privilege within the MRT.
Resumo:
Ghrelin is a peptide hormone produced in the stomach and a range of other tissues, where it has endocrine, paracrine and autocrine roles in both normal and disease states. Ghrelin has been shown to be an important growth factor for a number of tumours, including prostate and breast cancers. In this study, we examined the expression of the ghrelin axis (ghrelin and its receptor, the growth hormone secretagogue receptor, GHSR) in endometrial cancer. Ghrelin is expressed in a range of endometrial cancer tissues, while its cognate receptor, GHSR1a, is expressed in a small subset of normal and cancer tissues. Low to moderately invasive endometrial cancer cell lines were examined by RT-PCR and immunoblotting, demonstrating that ghrelin axis mRNA and protein expression correlate with differentiation status of Ishikawa, HEC1B and KLE endometrial cancer cell lines. Moreover, treatment with ghrelin potently stimulated cell proliferation and inhibited cell death. Taken together, these data indicate that ghrelin promotes the progression of endometrial cancer cells in vitro, and may contribute to endometrial cancer pathogenesis and represent a novel treatment target.
Common origins of MDA-MB-435 cells from various sources with those shown to have melanoma properties
Resumo:
Recently, the tissue origin of MDA-MB-435 cell line has been the subject of considerable debate. In this study, we set out to determine whether MDA-MB-435-DTP cells shown to express melanoma-specific genes were identical to various other MDA-MB-435 cell stocks worldwide. CGH-microarray, genetic polymorphism genotyping, microsatellite fingerprint analysis and/or chromosomal number confirmed that the MDA-MB-435 cells maintained at the Lombardi Comprehensive Cancer Center (MDA-MB-435-LCC) are almost identical to the MDA-MB-435-DTP cells, and showed a very similar profile to those obtained from the same original source (MD Anderson Cancer Center) but maintained independently (MDA-MB-435-PMCC). Gene expression profile analy-sis confirmed common expression of genes among different MDA-MB-435-LCC cell stocks, and identified some unique gene products in MDA-MB-435-PMCC cells. RT-PCR analysis confirmed the expression of the melanoma marker tyrosinase across multiple MDA-MB-435 cell stocks. Collectively, our results show that the MDA-MB-435 cells used widely have identical origins to those that exhibit a melanoma-like gene expression signature, but exhibit a small degree of genotypic and phenotypic drift.
Resumo:
Background The microenvironment plays a pivotal role in tumor cell proliferation, survival and migration. Invasive cancer cells face a new set of environmental challenges as they breach the basement membrane and colonize distant organs during the process of metastasis. Phenotypic switching, such as that which occurs during epithelial-mesenchymal transition (EMT), may be associated with a remodeling of cell surface receptors and thus altered responses to signals from the tumor microenvironment. Methodology/Principal Findings We assessed changes in intracellular Ca 2+ in cells loaded with Fluo-4 AM using a fluorometric imaging plate reader (FLIPR TETRA) and observed significant changes in the potency of ATP (EC 50 0.175 μM (-EGF) versus 1.731 μM (+EGF), P<0.05), and the nature of the ATP-induced Ca 2+ transient, corresponding with a 10-fold increase in the mesenchymal marker vimentin (P<0.05). We observed no change in the sensitivity to PAR2-mediated Ca 2+ signaling, indicating that these alterations are not simply a consequence of changes in global Ca 2+ homeostasis. To determine whether changes in ATP-mediated Ca 2+ signaling are preceded by alterations in the transcriptional profile of purinergic receptors, we analyzed the expression of a panel of P2X ionotropic and P2Y metabotropic purinergic receptors using real-time RT-PCR and found significant and specific alterations in the suite of ATP-activated purinergic receptors during EGF-induced EMT in breast cancer cells. Our studies are the first to show that P2X 5 ionotropic receptors are enriched in the mesenchymal phenotype and that silencing of P2X 5 leads to a significant reduction (25%, P<0.05) in EGF-induced vimentin protein expression. Conclusions The acquisition of a new suite of cell surface purinergic receptors is a feature of EGF-mediated EMT in MDA-MB-468 breast cancer cells. Such changes may impart advantageous phenotypic traits and represent a novel mechanism for the targeting of cancer metastasis.
Resumo:
Background Menstrual effluent affects mesothelial cell (MC) morphology. We evaluated whether these changes were consistent with epithelial-mesenchymal transitions (EMT). Methods Monolayer cultures of MC were incubated overnight in conditioned media, prepared from cells isolated form menstrual effluent, with or without kinase and ATP inhibitors. Changes in cell morphology were monitored using time-lapse video microscopy and immunohistochemistry. Effects on the expression of EMT-associated molecules were evaluated using real-time RT-PCR and/or Western blot analysis. Results Incubation in conditioned media disrupted cell-cell contacts, and increased MC motility. The changes were reversible. During the changes the distribution of cytokeratins, fibrillar actin and α-tubulin changed. Sodium azide, an inhibitor of ATP production, and Genistein, a general tyrosine kinase inhibitor, antagonized these effects. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, and SU6656, an Src tyrosine kinase inhibitor, only partially antagonized the effect. The expression of Snail and vimentin was markedly up-regulated, whereas the expression of E-cadherin was decreased and cytokeratins were altered. Conclusions In MC, menstrual effluent initiates a reversible, energy-dependent transition process from an epithelial to a mesenchymal phenotype. Involvement of the (Src) tyrosine kinase signalling pathway and the changes in the expression of cytokeratins, Snail, vimentin and E-cadherin demonstrate that the morphological changes are EMT.
Resumo:
Background There is increasing evidence supporting the concept of cancer stem cells (CSCs), which are responsible for the initiation, growth and metastasis of tumors. CSCs are thus considered the target for future cancer therapies. To achieve this goal, identifying potential therapeutic targets for CSCs is essential. Methods We used a natural product of vitamin E, gamma tocotrienol (gamma-T3), to treat mammospheres and spheres from colon and cervical cancers. Western blotting and real-time RT-PCR were employed to identify the gene and protein targets of gamma-T3 in mammospheres. Results We found that mammosphere growth was inhibited in a dose dependent manner, with total inhibition at high doses. Gamma-T3 also inhibited sphere growth in two other human epithelial cancers, colon and cervix. Our results suggested that both Src homology 2 domain-containing phosphatase 1 (SHP1) and 2 (SHP2) were affected by gamma-T3 which was accompanied by a decrease in K- and H-Ras gene expression and phosphorylated ERK protein levels in a dose dependent way. In contrast, expression of self-renewal genes TGF-beta and LIF, as well as ESR signal pathways were not affected by the treatment. These results suggest that gamma-T3 specifically targets SHP2 and the RAS/ERK signaling pathway. Conclusions SHP1 and SHP2 are potential therapeutic targets for breast CSCs and gamma-T3 is a promising natural drug for future breast cancer therapy.
Resumo:
Asthma is a chronic inflammatory airways disease in which respiratory viral infections frequently trigger exacerbations. Current treatment of asthma with combinations of inhaled corticosteroids and long acting beta2 agonists improves asthma control and reduces exacerbations but what impact this might have on innate anti-viral immunity is unclear. We investigated the in vitro effects of asthma drugs on innate anti-viral immunity. Peripheral blood mononuclear cells (PBMC) from healthy and asthmatic donors were cultured for 24 hours with the Toll-like receptor 7 agonist, imiquimod, or rhinovirus 16 (RV16) in the presence of budesonide and/or formoterol. Production of proinflammatory cytokines and expression of anti-viral intracellular signalling molecules were measured by ELISA and RT-PCR respectively. In PBMC from healthy donors, budesonide alone inhibited IP-10 and IL-6 production induced by imiquimod in a concentration-dependent manner and the degree of inhibition was amplified when budesonide and formoterol were used in combination. Formoterol alone had little effect on these parameters, except at high concentrations (10−6 M) when IL-6 production increased. In RV16 stimulated PBMC, the combination of budesonide and formoterol inhibited IFNα and IP-10 production in asthmatic as well as healthy donors. Combination of budesonide and formoterol also inhibited RV16-stimulated expression of the type I IFN induced genes myxovirus protein A and 2′, 5′ oligoadenylate synthetise. Notably, RV16 stimulated lower levels of type Myxovirus A and oligoadenylate synthase in PBMC of asthmatics than control donors. These in vitro studies demonstrate that combinations of drugs commonly used in asthma therapy inhibit both early pro-inflammatory cytokines and key aspects of the type I IFN pathway. These findings suggest that budesonide and formoterol curtail excessive inflammation induced by rhinovirus infections in patients with asthma, but whether this inhibits viral clearance in vivo remains to be determined.
Resumo:
IL-2, IL-4 and IFN-γ mRNA expression, and production of IFN-γ was examined in mesenteric lymph node cells (MLNC) and CD4+ enriched T cell populations of nematode resistant (R) and susceptible (S) line lambs by use of RT-PCR and ELISA. Five R and S line lambs that were immunised by repeated oxfendazole-abbreviated infections and 5 non-immunised R and S line lambs were used. All lambs grazed nematode infected pasture for 107 days. Immunisation enhanced the resistant status in both R and S lambs. MLNC obtained from slaughtered animals were stimulated with Con A or T. colubriformis specific antigen. Non-stimulated MLNC of immunised lambs expressed higher levels of IL-4 mRNA and lower levels of IL-2 mRNA than non-immunised lambs. MLNC of immunised R and S line lambs stimulated with antigen for 24 h expressed detectable amounts of IL-4 mRNA that was not seen in non-immunised controls. CD4+ T cell enriched cell populations of immunised R and S lambs and non-immunised R lambs expressed moderate to high levels of IL-4 mRNA. Con A stimulated MLNC of immunised R and S lambs expressed high levels IFN-γ mRNA and produced high amounts of IFN-γ. Lower levels were present in non-immunised controls. The results indicate that R line lambs and immunised S line lambs respond to natural nematode challenge with a predominating IL-4 cytokine response when compared to non-immunised S lambs.
Resumo:
The vacuolating autotransporter (AT) toxin (Vat) contributes to Uropathogenic Escherichia coli (UPEC) fitness during systemic infection. Here we characterised Vat and investigated its regulation in UPEC. We assessed the prevalence of vat in a collection of 45 UPEC urosepsis strains and showed that it was present in 31 (68%) of the isolates. The isolates containing the vat gene corresponded to three major E. coli sequence types (ST12, 73 and 95) and these strains secreted the Vat protein. Further analysis of the vat genomic locus identified a conserved gene located directly downstream of vat that encodes a putative MarR-like transcriptional regulator, which we termed vatX. The vat-vatX genes were present in the UPEC reference strain CFT073 and RT-PCR revealed both genes are co-transcribed. Over-expression of vatX in CFT073 led to a 3-fold increase in vat gene transcription. The vat promoter region contained three putative nucleation sites for the global transcriptional regulator H-NS; thus the hns gene was mutated in CFT073 (to generate CFT073hns). Western blot analysis using a Vat-specific antibody revealed a significant increase in Vat expression in CFT073hns compared to wild-type CFT073. Direct H-NS binding to the vat promoter region was demonstrated using purified H-NS in combination with electrophoresis mobility shift assays. Finally, Vat-specific antibodies were detected in plasma samples from urosepsis patients infected by vat-containing UPEC strains, demonstrating Vat is expressed during infection. Overall, this study has demonstrated that Vat is a highly prevalent and tightly regulated immunogenic SPATE secreted by UPEC during infection.
Resumo:
Malignant pleural mesothelioma (MPM) is a rare aggressive cancer of the pleura. Asbestos exposure (through inhalation) is the most well established risk factor for mesothelioma. The current standard of care for patients suffering from MPM is a combination of cisplatin and pemetrexed (or alternatively cisplatin and raltitrexed). Most patients, however, die within 24 months of diagnosis. New therapies are therefore urgently required for this disease. Lysine acetyltransferases (KATs) including KAT5 have been linked with the development of cisplatin resistance. This gene may therefore be altered in MPM and could represent a novel candidate target for intervention. Using RT-PCR screening the expression of all known KAT5 variants was found to be markedly increased in malignant tumors compared to benign pleura. When separated according to histological subtype, KAT5 was significantly overexpressed in both the sarcomatoid and biphasic subgroups for all transcript variants. A panel of MPM cell lines including the normal pleural cells LP9 and Met5A was screened for expression of KAT5 variants. Treatment of cells with a small molecule inhibitor of KAT5 (MG-149) caused significant inhibition of cellular proliferation (p<0.0001), induction of apoptosis and was accompanied by significant induction of pro-inflammatory cytokines/chemokines.