194 resultados para Pulse Pressure
Resumo:
This study was designed to determine the Intraocular Pressure (IOP) response to differing levels of dehydration. Seven males participated in a 90 minute treadmill walk (5 km/h and 1 % grade) in both a cool (22 °C) and hot (43 °C) climate. At Baseline and at 30 minute intervals measurements of IOP, by tonometery, and indicators of hydration status (nude weight and plasma osmolality (Posm)) were taken. Body temperature and heart rate were also measured at these time points. Statistically significant interactions (time point (4) by trial (2)) were observed for IOP (F = 10.747, p = 0.009) and body weight loss (F = 50.083, p < 0.001) to decrease, and Posm (F = 34.867, p < 0.001) to increase, by a significantly greater amount during the hot trial compared to the cool. A univariate general linear model showed a significant relationship between IOP and body weight loss (F = 37.63, p < 0.001) and Posm (F = 38.53, p < 0.001). A significant interaction was observed for body temperature (F = 20.908, p < 0.001) and heart rate (F = 25.487, p < 0.001) between the trials and time points, but there was negligible association between these variables and IOP (Pearson correlation coefficient < ±0.5). The present study provides evidence to suggest that IOP is influenced by hydration status.
Resumo:
Background/objectives This study estimates the economic outcomes of a nutrition intervention to at-risk patients compared with standard care in the prevention of pressure ulcer. Subjects/methods Statistical models were developed to predict ‘cases of pressure ulcer avoided’, ‘number of bed days gained’ and ‘change to economic costs’ in public hospitals in 2002–2003 in Queensland, Australia. Input parameters were specified and appropriate probability distributions fitted for: number of discharges per annum; incidence rate for pressure ulcer; independent effect of pressure ulcer on length of stay; cost of a bed day; change in risk in developing a pressure ulcer associated with nutrition support; annual cost of the provision of a nutrition support intervention for at-risk patients. A total of 1000 random re-samples were made and the results expressed as output probability distributions. Results The model predicts a mean 2896 (s.d. 632) cases of pressure ulcer avoided; 12 397 (s.d. 4491) bed days released and corresponding mean economic cost saving of euros 2 869 526 (s.d. 2 078 715) with a nutrition support intervention, compared with standard care. Conclusion Nutrition intervention is predicted to be a cost-effective approach in the prevention of pressure ulcer in at-risk patients.
Resumo:
Background: Nurses routinely use pulse oximetry (SpO2) monitoring equipment in acute care. Interpretation of the reading involves physical assessment and awareness of parameters including temperature, haemoglobin, and peripheral perfusion. However, there is little information on whether these clinical signs are routinely measured or used in pulse oximetry interpretation by nurses. Aim: The aim of this study was to review current practice of SpO2 measurement and the associated documentation of the physiological data that is required for accurate interpretation of the readings. The study reviewed the documentation practices relevant to SpO2 in five medical wards of a tertiary level metropolitan hospital. Method: A prospective casenote audit was conducted on random days over a three-month period. The audit tool had been validated in a previous study. Results: One hundred and seventy seven episodes of oxygen saturation monitoring were reviewed. Our study revealed a lack of parameters to validate the SpO2 readings. Only 10% of the casenotes reviewed had sufficient physiological data to meaningfully interpret the SpO2 reading and only 38% had an arterial blood gas as a comparator. Nursing notes rarely documented clinical interpretation of the results. Conclusion: The audits suggest that medical and nursing staff are not interpreting the pulse oximetry results in context and that the majority of the results were normal with no clinical indication for performing this observation. This reduces the usefulness of such readings and questions the appropriateness of performing “routine” SpO2 in this context.
Resumo:
In this article, we analyze the three-component reaction-diffusion system originally developed by Schenk et al. (PRL 78:3781–3784, 1997). The system consists of bistable activator-inhibitor equations with an additional inhibitor that diffuses more rapidly than the standard inhibitor (or recovery variable). It has been used by several authors as a prototype three-component system that generates rich pulse dynamics and interactions, and this richness is the main motivation for the analysis we present. We demonstrate the existence of stationary one-pulse and two-pulse solutions, and travelling one-pulse solutions, on the real line, and we determine the parameter regimes in which they exist. Also, for one-pulse solutions, we analyze various bifurcations, including the saddle-node bifurcation in which they are created, as well as the bifurcation from a stationary to a travelling pulse, which we show can be either subcritical or supercritical. For two-pulse solutions, we show that the third component is essential, since the reduced bistable two-component system does not support them. We also analyze the saddle-node bifurcation in which two-pulse solutions are created. The analytical method used to construct all of these pulse solutions is geometric singular perturbation theory, which allows us to show that these solutions lie in the transverse intersections of invariant manifolds in the phase space of the associated six-dimensional travelling wave system. Finally, as we illustrate with numerical simulations, these solutions form the backbone of the rich pulse dynamics this system exhibits, including pulse replication, pulse annihilation, breathing pulses, and pulse scattering, among others.
Resumo:
In this article, we analyze the stability and the associated bifurcations of several types of pulse solutions in a singularly perturbed three-component reaction-diffusion equation that has its origin as a model for gas discharge dynamics. Due to the richness and complexity of the dynamics generated by this model, it has in recent years become a paradigm model for the study of pulse interactions. A mathematical analysis of pulse interactions is based on detailed information on the existence and stability of isolated pulse solutions. The existence of these isolated pulse solutions is established in previous work. Here, the pulse solutions are studied by an Evans function associated to the linearized stability problem. Evans functions for stability problems in singularly perturbed reaction-diffusion models can be decomposed into a fast and a slow component, and their zeroes can be determined explicitly by the NLEP method. In the context of the present model, we have extended the NLEP method so that it can be applied to multi-pulse and multi-front solutions of singularly perturbed reaction-diffusion equations with more than one slow component. The brunt of this article is devoted to the analysis of the stability characteristics and the bifurcations of the pulse solutions. Our methods enable us to obtain explicit, analytical information on the various types of bifurcations, such as saddle-node bifurcations, Hopf bifurcations in which breathing pulse solutions are created, and bifurcations into travelling pulse solutions, which can be both subcritical and supercritical.
Resumo:
The purpose of this paper is to develop a second-moment closure with a near-wall turbulent pressure diffusion model for three-dimensional complex flows, and to evaluate the influence of the turbulent diffusion term on the prediction of detached and secondary flows. A complete turbulent diffusion model including a near-wall turbulent pressure diffusion closure for the slow part was developed based on the tensorial form of Lumley and included in a re-calibrated wall-normal-free Reynolds-stress model developed by Gerolymos and Vallet. The proposed model was validated against several one-, two, and three-dimensional complex flows.
Resumo:
Computational Fluid Dynamics (CFD) simulations are widely used in mechanical engineering. Although achieving a high level of confidence in numerical modelling is of crucial importance in the field of turbomachinery, verification and validation of CFD simulations are very tricky especially for complex flows encountered in radial turbines. Comprehensive studies of radial machines are available in the literature. Unfortunately, none of them include enough detailed geometric data to be properly reproduced and so cannot be considered for academic research and validation purposes. As a consequence, design improvements of such configurations are difficult. Moreover, it seems that well-developed analyses of radial turbines are used in commercial software but are not available in the open literature especially at high pressure ratios. It is the purpose of this paper to provide a fully open set of data to reproduce the exact geometry of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multipurpose Small Power Unit. First, preliminary one-dimensional meanline design and analysis are performed using the commercial software RITAL from Concepts-NREC in order to establish a complete reference test case available for turbomachinery code validation. The proposed design of the existing turbine is then carefully and successfully checked against the geometrical and experimental data partially published in the literature. Then, three-dimensional Reynolds-Averaged Navier-Stokes simulations are conducted by means of the Axcent-PushButton CFDR CFD software. The effect of the tip clearance gap is investigated in detail for a wide range of operating conditions. The results confirm that the 3D geometry is correctly reproduced. It also reveals that the turbine is shocked while designed to give a high-subsonic flow and highlight the importance of the diffuser.
Resumo:
To feel another person’s pulse is an intimate and physical interaction. In these prototypes we use near field communications to extend the tangible reach of our heart beat, so another person can feel our heart beat at a distance. The work is an initial experiment in near field haptic interaction, and is used to explore the quality of interactions resulting from feeling another persons pulse. The work takes the form of two feathered white gauntlets, to be worn on the fore arm. Each of the gauntlets contain a pulse sensor, radio transmitter and vibrator. The pulse of the wearer is transmitted to the other feathered gauntlet and transformed into haptic feedback. When there are two wearers, their heart beats are exchanged. To be felt by of each other without physical contact.
Resumo:
Objective: To determine the prevalence, severity, location, etiology, treatment, and healing of medical device-related pressure ulcers in intensive care patients for up to 7 days. Design: Prospective repeated measures study. Setting and participants: Patients in 6 intensive care units of 2 major medical centers, one each in Australia and the United States, were screened 1 day per month for 6 months. Those with device-related ulcers were followed daily up to 7 days. Outcome measures: Device-related ulcer prevalence, pain, infection, treatment, healing. Results: 15/483 patients had device-related ulcers and 9/15 with 11 ulcers were followed beyond screening. Their mean age was 60.5 years, most were men, over-weight, and at increased pressure ulcer risk. Endotracheal and nasogastric tubes were the cause of most device-related ulcers. Repositioning was the most frequent treatment. 4/11 ulcers healed within the 7 day observation period. Conclusion: Device-related ulcer prevalence was 3.1%, similar to that reported in the limited literature available, indicating an ongoing problem. Systematic assessment and repositioning of devices are the mainstays of care. We recommend continued prevalence determination and that nurses remain vigilant to prevent device-related ulcers, especially in patients with nasogastric and endotracheal tubes.
Resumo:
Accelerating a project can be rewarding. The consequences, however, can be troublesome if productivity and quality are sacrificed for the sake of remaining ahead of schedule, such that the actual schedule benefits are often barely worth the effort. The tradeoffs and paths of schedule pressure and its causes and effects are often overlooked when schedule decisions are being made. This paper analyses the effects that schedule pressure has on construction performance, and focuses on tradeoffs in scheduling. A research framework has been developed using a causal diagram to illustrate the cause-and-effect analysis of schedule pressure. An empirical investigation has been performed by using survey data collected from 102 construction practitioners working in 38 construction sites in Singapore. The results of this survey data analysis indicate that advantages of increasing the pace of work—by working under schedule pressure—can be offset by losses in productivity and quality. The negative effects of schedule pressure arise mainly by working out of sequence, generating work defects, cutting corners, and losing the motivation to work. The adverse effects of schedule pressure can be minimized by scheduling construction activities realistically and planning them proactively, motivating workers, and by establishing an effective project coordination and communication mechanism.
Resumo:
Characterization of the combustion products released during the burning of commonly used engineering metallic materials may aid in material selection and risk assessment for the design of oxygen systems. The characterization of combustion products in regards to size distribution and morphology gives useful information for systems addressing fire detection. Aluminum rods (3.2-mm diameter cylinders) were vertically mounted inside a combustion chamber and ignited in pressurized oxygen by resistively heating an aluminum/palladium igniter wire attached to the bottom of the test sample. This paper describes the experimental work conducted to establish the particle size distribution and morphology of the resultant combustion products collected after the burning was completed and subsequently analyzed. In general, the combustion products consisted of a re-solidified oxidized slag and many small hollow spheres of size ranging from about 500 nm to 1000 µm in diameter, surfaced with quenched dendritic and grain-like structures. The combustion products were characterized using optical and scanning electron microscopy.