189 resultados para Programming (Mathematics)
Resumo:
This paper presents a novel approach to road-traffic control for interconnected junctions. With a local fuzzy-logic controller (FLC) installed at each junction, a dynamic-programming (DP) technique is proposed to derive the green time for each phase in a traffic-light cycle. Coordination parameters from the adjacent junctions are also taken into consideration so that organized control is extended beyond a single junction. Instead of pursuing the absolute optimization of traffic delay, this study examines a practical approach to enable the simple implementation of coordination among junctions, while attempting to reduce delays, if possible. The simulation results show that the delay per vehicle can be substantially reduced, particularly when the traffic demand reaches the junction capacity. The implementation of this controller does not require complicated or demanding hardware, and such simplicity makes it a useful tool for offline studies or realtime control purposes.
Resumo:
This paper provides an interim report of a large empirical evaluation study in progress. An intervention was implemented to evaluate the effectiveness of the Pattern and Structure Mathematical Awareness Program (PASMAP) on Kindergarten students’ mathematical development. Four large schools (two from Sydney and two from Brisbane), 16 teachers and their 316 students participated in the first phase of a 2-year longitudinal study. Eight of 16 classes implemented the PASMAP program over three school terms. This paper provides an overview of key aspects of the intervention, and preliminary analysis of the impact of PASMAP on students’ representation, abstraction and generalisation of mathematical ideas.
Resumo:
This paper reports on a mathematics education research project centred on teachers’ pedagogical practices and capacity to assess Indigenous Australian students in a culture-fair manner. The project has been funded by the Australian Research Council Linkage program and is being conducted in seven Catholic and Independent primary schools in north Queensland. Our Industry Partners are Catholic Education and the Association of Independent Schools, Queensland. The study aims to provide greater understanding about how to build more equitable assessment practices to address the issue of underperforming Aboriginal and Torres Strait Islander (ATSI) students in regional and remote Australia. The goal is to identify ways forward by attending to culture-fair assessment practice. The research is exploring the attitudes, beliefs and responses of Indigenous students to assessment in the context of mathematics learning with particular focus on teacher knowledge in these educational settings in relation to the design of assessment tasks that are authentic and engaging for these students in an accountability context. This approach highlights how teachers need to distinguish the ‘funds of knowledge’ (González, Moll, Floyd Tenery, Rivera, Rendón, Gonzales & Amanti, 2008) that Indigenous students draw on and how teachers need to be culturally responsive in their pedagogy to open up curriculum and assessment practice to allow for different ways of knowing and being
Resumo:
Engaging and motivating students in mathematics lessons can be challenging. The traditional approach of chalk and talk can sometimes be problematic. The new generation of educational robotics has the potential to not only motivate students but also enable teachers to demonstrate concepts in mathematics by connecting concepts with the real world. Robotics hardware and the software are becoming increasing more user-friendly and as a consequence they can be blended in with classroom activities with greater ease. Using robotics in suitably designed activities promotes a constructivist learning environment and enables students to engage in higher order thinking through hands-on problem solving. Teamwork and collaborative learning are also enhanced through the use of this technology. This paper discusses a model for teaching concepts in mathematics in middle year classrooms. It will also highlight some of the benefits and challenges of using robotics in the learning environment.
Resumo:
This tutorial is designed to help new users become familiar with using the Spartan-3E board. The tutorial steps through the following: writing a small program in VHDL which carries out simple combinational logic; connecting the program inputs and outputs to the switches, buttons and LEDs on the Spartan-3E board; and downloading the program to the Spartan-3E board using the Project Navigator software.
Resumo:
We present the findings of a study into the implementation of explicitly criterion- referenced assessment in undergraduate courses in mathematics. We discuss students' concepts of criterion referencing and also the various interpretations that this concept has among mathematics educators. Our primary goal was to move towards a classification of criterion referencing models in quantitative courses. A secondary goal was to investigate whether explicitly presenting assessment criteria to students was useful to them and guided them in responding to assessment tasks. The data and feedback from students indicates that while students found the criteria easy to understand and useful in informing them as to how they would be graded, it did not alter the way the actually approached the assessment activity.
Resumo:
Tangible programming elements offer the dynamic and programmable properties of a computer without the complexity introduced by the keyboard, mouse and screen. This paper explores the extent to which programming skills are used by children during interactions with a set of tangible programming elements: the Electronic Blocks. An evaluation of the Electronic Blocks indicates that children become heavily engaged with the blocks, and learn simple programming with a minimum of adult support.
Resumo:
Direct instruction, an approach that is becoming familiar to Queensland schools that have high Aboriginal and Torres Strait Islander populations, has been gaining substantial political and popular support in the United States of America [USA], England and Australia. Recent examples include the No Child Left Behind policy in the USA, the British National Numeracy Strategy and in Australia, Effective Third Wave Intervention Strategies. Direct instruction, stems directly from the model created in the 1960s under a Project Follow Through grant. It has been defined as a comprehensive system of education involving all aspects of instruction. Now in its third decade of influencing curriculum, instruction and research, direct instruction is also into its third decade of controversy because of its focus on explicit and highly directed instruction for learning. Characteristics of direct instruction are critiqued and discussed to identify implications for teaching and learning for Indigenous students.
Resumo:
In this paper, we report on the findings of an exploratory study into the experience of students as they learn first year engineering mathematics. Here we define engineering as the application of mathematics and sciences to the building and design of projects for the use of society (Kirschenman and Brenner 2010)d. Qualitative and quantitative data on students' views of the relevance of their mathematics study to their engineering studies and future careers in engineering was collected. The students described using a range of mathematics techniques (mathematics skills developed, mathematics concepts applied to engineering and skills developed relevant for engineering) for various usages (as a subject of study, a tool for other subjects or a tool for real world problems). We found a number of themes relating to the design of mathematics engineering curriculum emerged from the data. These included the relevance of mathematics within different engineering majors, the relevance of mathematics to future studies, the relevance of learning mathematical rigour, and the effectiveness of problem solving tasks in conveying the relevance of mathematics more effectively than other forms of assessment. We make recommendations for the design of engineering mathematics curriculum based on our findings.
Resumo:
This chapter examines how a change in school leadership can successfully address competencies in complex situations and thus create a positive learning environment in which Indigenous students can excel in their learning rather than accept a culture that inhibits school improvement. Mathematics has long been an area that has failed to assist Indigenous students in improving their learning outcomes, as it is a Eurocentric subject (Rothbaum, Weisz, Pott, Miyake & Morelli, 2000, De Plevitz, 2007) and does not contextualize pedagogy with Indigenous culture and perspectives (Matthews, Cooper & Baturo, 2007). The chapter explores the work of a team of Indigenous and non-Indigenous academics from the YuMi Deadly Centre who are turning the tide on improving Indigenous mathematical outcomes in schools and in communities with high numbers of Aboriginal and Torres Strait Islander students.
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive semidefinite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space - classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semidefinite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -using the labeled part of the data one can learn an embedding also for the unlabeled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method for learning the 2-norm soft margin parameter in support vector machines, solving an important open problem.