581 resultados para Population modeling
Resumo:
Over recent years, many scholars have studied the conceptual modeling of information systems based on a theory of ontological expressiveness. This theory offers four constructs that inform properties of modeling grammars in the form of ontological deficiencies, and their implications for development and use of conceptual modeling in IS practice. In this paper we report on the development of a valid and reliable instrument for measuring the perceptions that individuals have of the ontological deficiencies of conceptual modeling grammars. We describe a multi-stage approach for instrument development that incorporates feedback from expert and user panels. We also report on a field test of the instrument with 590 modeling practitioners. We further study how different levels of modeling experience influence user perceptions of ontological deficiencies of modeling grammars. We provide implications for practice and future research.
Resumo:
Purpose: To ascertain the effectiveness of object-centered three-dimensional representations for the modeling of corneal surfaces. Methods: Three-dimensional (3D) surface decomposition into series of basis functions including: (i) spherical harmonics, (ii) hemispherical harmonics, and (iii) 3D Zernike polynomials were considered and compared to the traditional viewer-centered representation of two-dimensional (2D) Zernike polynomial expansion for a range of retrospective videokeratoscopic height data from three clinical groups. The data were collected using the Medmont E300 videokeratoscope. The groups included 10 normal corneas with corneal astigmatism less than −0.75 D, 10 astigmatic corneas with corneal astigmatism between −1.07 D and 3.34 D (Mean = −1.83 D, SD = ±0.75 D), and 10 keratoconic corneas. Only data from the right eyes of the subjects were considered. Results: All object-centered decompositions led to significantly better fits to corneal surfaces (in terms of the RMS error values) than the corresponding 2D Zernike polynomial expansions with the same number of coefficients, for all considered corneal surfaces, corneal diameters (2, 4, 6, and 8 mm), and model orders (4th to 10th radial orders) The best results (smallest RMS fit error) were obtained with spherical harmonics decomposition which lead to about 22% reduction in the RMS fit error, as compared to the traditional 2D Zernike polynomials. Hemispherical harmonics and the 3D Zernike polynomials reduced the RMS fit error by about 15% and 12%, respectively. Larger reduction in RMS fit error was achieved for smaller corneral diameters and lower order fits. Conclusions: Object-centered 3D decompositions provide viable alternatives to traditional viewer-centered 2D Zernike polynomial expansion of a corneal surface. They achieve better fits to videokeratoscopic height data and could be particularly suited to the analysis of multiple corneal measurements, where there can be slight variations in the position of the cornea from one map acquisition to the next.
Resumo:
Background: There is a sound rationale for the population-based approach to falls injury prevention but there is currently insufficient evidence to advise governments and communities on how they can use population-based strategies to achieve desired reductions in the burden of falls-related injury.---------- Aim: To quantify the effectiveness of a streamlined (and thus potentially sustainable and cost-effective), population-based, multi-factorial falls injury prevention program for people over 60 years of age.---------- Methods: Population-based falls-prevention interventions were conducted at two geographically-defined and separate Australian sites: Wide Bay, Queensland, and Northern Rivers, NSW. Changes in the prevalence of key risk factors and changes in rates of injury outcomes within each community were compared before and after program implementation and changes in rates of injury outcomes in each community were also compared with the rates in their respective States.---------- Results: The interventions in neither community substantially decreased the rate of falls-related injury among people aged 60 years or older, although there was some evidence of reductions in occurrence of multiple falls reported by women. In addition, there was some indication of improvements in fall-related risk factors, but the magnitudes were generally modest.---------- Conclusion: The evidence suggests that low intensity population-based falls prevention programs may not be as effective as those are intensively implemented.
Resumo:
The main objective of this PhD was to further develop Bayesian spatio-temporal models (specifically the Conditional Autoregressive (CAR) class of models), for the analysis of sparse disease outcomes such as birth defects. The motivation for the thesis arose from problems encountered when analyzing a large birth defect registry in New South Wales. The specific components and related research objectives of the thesis were developed from gaps in the literature on current formulations of the CAR model, and health service planning requirements. Data from a large probabilistically-linked database from 1990 to 2004, consisting of fields from two separate registries: the Birth Defect Registry (BDR) and Midwives Data Collection (MDC) were used in the analyses in this thesis. The main objective was split into smaller goals. The first goal was to determine how the specification of the neighbourhood weight matrix will affect the smoothing properties of the CAR model, and this is the focus of chapter 6. Secondly, I hoped to evaluate the usefulness of incorporating a zero-inflated Poisson (ZIP) component as well as a shared-component model in terms of modeling a sparse outcome, and this is carried out in chapter 7. The third goal was to identify optimal sampling and sample size schemes designed to select individual level data for a hybrid ecological spatial model, and this is done in chapter 8. Finally, I wanted to put together the earlier improvements to the CAR model, and along with demographic projections, provide forecasts for birth defects at the SLA level. Chapter 9 describes how this is done. For the first objective, I examined a series of neighbourhood weight matrices, and showed how smoothing the relative risk estimates according to similarity by an important covariate (i.e. maternal age) helped improve the model’s ability to recover the underlying risk, as compared to the traditional adjacency (specifically the Queen) method of applying weights. Next, to address the sparseness and excess zeros commonly encountered in the analysis of rare outcomes such as birth defects, I compared a few models, including an extension of the usual Poisson model to encompass excess zeros in the data. This was achieved via a mixture model, which also encompassed the shared component model to improve on the estimation of sparse counts through borrowing strength across a shared component (e.g. latent risk factor/s) with the referent outcome (caesarean section was used in this example). Using the Deviance Information Criteria (DIC), I showed how the proposed model performed better than the usual models, but only when both outcomes shared a strong spatial correlation. The next objective involved identifying the optimal sampling and sample size strategy for incorporating individual-level data with areal covariates in a hybrid study design. I performed extensive simulation studies, evaluating thirteen different sampling schemes along with variations in sample size. This was done in the context of an ecological regression model that incorporated spatial correlation in the outcomes, as well as accommodating both individual and areal measures of covariates. Using the Average Mean Squared Error (AMSE), I showed how a simple random sample of 20% of the SLAs, followed by selecting all cases in the SLAs chosen, along with an equal number of controls, provided the lowest AMSE. The final objective involved combining the improved spatio-temporal CAR model with population (i.e. women) forecasts, to provide 30-year annual estimates of birth defects at the Statistical Local Area (SLA) level in New South Wales, Australia. The projections were illustrated using sixteen different SLAs, representing the various areal measures of socio-economic status and remoteness. A sensitivity analysis of the assumptions used in the projection was also undertaken. By the end of the thesis, I will show how challenges in the spatial analysis of rare diseases such as birth defects can be addressed, by specifically formulating the neighbourhood weight matrix to smooth according to a key covariate (i.e. maternal age), incorporating a ZIP component to model excess zeros in outcomes and borrowing strength from a referent outcome (i.e. caesarean counts). An efficient strategy to sample individual-level data and sample size considerations for rare disease will also be presented. Finally, projections in birth defect categories at the SLA level will be made.
Resumo:
Process modeling is a complex organizational task that requires many iterations and communication between the business analysts and the domain specialists involved in the process modeling. The challenge of process modeling is exacerbated, when the process of modeling has to be performed in a cross-organizational, distributed environment. Some systems have been developed to support collaborative process modeling, all of which use traditional 2D interfaces. We present an environment for collaborative process modeling, using 3D virtual environment technology. We make use of avatar instantiations of user ego centres, to allow for the spatial embodiment of the user with reference to the process model. We describe an innovative prototype collaborative process modeling approach, implemented as a modeling environment in Second Life. This approach leverages the use of virtual environments to provide user context for editing and collaborative exercises. We present a positive preliminary report on a case study, in which a test group modelled a business process using the system in Second Life.
Resumo:
Process models provide visual support for analyzing and improving complex organizational processes. In this paper, we discuss differences of process modeling languages using cognitive effectiveness considerations, to make statements about the ease of use and quality of user experience. Aspects of cognitive effectiveness are of importance for learning a modeling language, creating models, and understanding models. We identify the criteria representational clarity, perceptual discriminability, perceptual immediacy, visual expressiveness, and graphic parsimony to compare and assess the cognitive effectiveness of different modeling languages. We apply these criteria in an analysis of the routing elements of UML Activity Diagrams, YAWL, BPMN, and EPCs, to uncover their relative strengths and weaknesses from a quality of user experience perspective. We draw conclusions that are relevant to the usability of these languages in business process modeling projects.
Resumo:
The value of business process models is dependent not only on the choice of graphical elements in the model, but also on their annotation with additional textual and graphical information. This research discusses the use of text and icons for labeling the graphical constructs in a process model. We use two established verb classification schemes to examine the choice of activity labels in process modeling practice. Based on our findings, we synthesize a set of twenty-five activity label categories. We propose a systematic approach for graphically representing these label categories through the use of graphical icons, such that the resulting process models are easier and more readily understandable by end users. Our findings contribute to an ongoing stream of research investigating the practice of process modeling and thereby contribute to the body of knowledge about conceptual modeling quality overall.
Resumo:
In this paper, we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new double smooth transition conditional correlation (DSTCC) GARCH model extends the smooth transition conditional correlation (STCC) GARCH model of Silvennoinen and Teräsvirta (2005) by including another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. Applying the model to the stock and bond futures data, we discover that the correlation pattern between them has dramatically changed around the turn of the century. The model is also applied to a selection of world stock indices, and we find evidence for an increasing degree of integration in the capital markets.
Resumo:
Public knowledge and beliefs about injury prevention are currently poorly understood. A total of 1030 residents in the State of Queensland, Australia responded to questions about injury prevention in or around the home, on the roads, in or on the water, at work, deliberate injury, and responsibility for preventing deliberate injury allowing comparison with published injury prevalence data. Overall the youngest members of society were identified as being the most vulnerable to deliberate injury with young adults accounting for 59% of responses aligning with published data. However, younger adults failed to indicate an awareness of their own vulnerability to deliberate injury in alcohol environments even though 61% of older respondents were aware of this trend. Older respondents were the least inclined to agree that they could make a difference to their own safety in or around the home but were more inclined to agree that they could make a difference to their own safety at work. The results are discussed with a view to using improved awareness of public beliefs about injury to identify barriers to the uptake of injury prevention strategies (e.g. low perceived injury risk) as well as areas where injury prevention strategies may receive public support.
Resumo:
The role of intangible firm capabilities as a source of competitive advantage has come into prominence in marketing strategy literature, due to the Resource Based View. This paper applies the Resource Based View and hypothesizes that strategic flexibility and organisation learning, conceptualised as capabilities, positively effect e-business adoption and competitive advantage. Partial Lease Squares analysis suggest that theoretical constructs function as hypothesised and explain a significant variation on e-business adoption and competitive advantage. Firms adopting e-business should develop capabilities such as strategic flexibility and organisation learning and that vendor firms may segment their potential clients based on these capabilities.
Resumo:
Robust texture recognition in underwater image sequences for marine pest population control such as Crown-Of-Thorns Starfish (COTS) is a relatively unexplored area of research. Typically, humans count COTS by laboriously processing individual images taken during surveys. Being able to autonomously collect and process images of reef habitat and segment out the various marine biota holds the promise of allowing researchers to gain a greater understanding of the marine ecosystem and evaluate the impact of different environmental variables. This research applies and extends the use of Local Binary Patterns (LBP) as a method for texture-based identification of COTS from survey images. The performance and accuracy of the algorithms are evaluated on a image data set taken on the Great Barrier Reef.
Resumo:
This paper describes an application of decoupled probabilistic world modeling to achieve team planning. The research is based on the principle that the action selection mechanism of a member in a robot team can select an effective action if a global world model is available to all team members. In the real world, the sensors are imprecise, and are individual to each robot, hence providing each robot a partial and unique view about the environment. We address this problem by creating a probabilistic global view on each agent by combining the perceptual information from each robot. This probabilistic view forms the basis for selecting actions to achieve the team goal in a dynamic environment. Experiments have been carried out to investigate the effectiveness of this principle using custom-built robots for real world performance, in addition, to extensive simulation results. The results show an improvement in team effectiveness when using probabilistic world modeling based on perception sharing for team planning.
Resumo:
This paper presents a new approach to improving the effectiveness of autonomous systems that deal with dynamic environments. The basis of the approach is to find repeating patterns of behavior in the dynamic elements of the system, and then to use predictions of the repeating elements to better plan goal directed behavior. It is a layered approach involving classifying, modeling, predicting and exploiting. Classifying involves using observations to place the moving elements into previously defined classes. Modeling involves recording features of the behavior on a coarse grained grid. Exploitation is achieved by integrating predictions from the model into the behavior selection module to improve the utility of the robot's actions. This is in contrast to typical approaches that use the model to select between different strategies or plays. Three methods of adaptation to the dynamic features of the environment are explored. The effectiveness of each method is determined using statistical tests over a number of repeated experiments. The work is presented in the context of predicting opponent behavior in the highly dynamic and multi-agent robot soccer domain (RoboCup).
Resumo:
PURPOSE: We report our telephone-based system for selecting community control series appropriate for a complete Australia-wide series of Ewing's sarcoma cases. METHODS: We used electronic directory random sampling to select age-matched controls. The sampling has all listed telephone numbers on an up-dated CD-Rom. RESULTS: 95% of 2245 telephone numbers selected were successfully contacted. The mean number of attempts needed was 1.94, 58% answering at the first attempt. On average, we needed 4.5 contacts per control selected. Calls were more likely to be successful (reach a respondent) when made in the evening (except Saturdays). The overall response rate among contacted telephone numbers was 92.8%. Participation rates among female and male respondents were practically the same. The exclusion of unlisted numbers (13.5% of connected households) and unconnected households (3.7%) led to potential selection bias. However, restricting the case series to listed cases only, plus having external information on the direction of potential bias allow meaningful interpretation of our data. CONCLUSION: Sampling from an electronic directory is convenient, economical and simple, and gives a very good yield of eligible subjects compared to other methods.
Resumo:
A persistent question in the development of models for macroeconomic policy analysis has been the relative role of economic theory and evidence in their construction. This paper looks at some popular strategies that involve setting up a theoretical or conceptual model (CM) which is transformed to match the data and then made operational for policy analysis. A dynamic general equilibrium model is constructed that is similar to standard CMs. After calibration to UK data it is used to examine the utility of formal econometric methods in assessing the match of the CM to the data and also to evaluate some standard model-building strategies. Keywords: Policy oriented economic modeling; Model evaluation; VAR models