89 resultados para Planetary quarantine.
Resumo:
An International Society of Sugar Cane Technologists (ISSCT) Engineering Workshop was held in Piracicaba, Brazil from 30 June to 4 July 2008. The theme of the workshop was Design, manufacturing and maintenance of sugar mill equipment. The workshop consisted of a series of technical sessions and site visits. The Brazilian sugar industry is growing rapidly. The growth has occurred as the result of the sugar industry’s position as a key provider of renewable energy in the form of ethanol and, more recently, electricity. The increased focus on electricity is seeing investment in high pressure (100 bar) boilers, cane cleaning plants that allow an increased biomass supply from trash and digesters that produce biogas from dunder. It is clear that the Brazilian sugar industry has a well defined place in the country’s future. The ISSCT workshop provided a good opportunity to gain information from equipment suppliers and discuss new technology that may have application in Australia. The new technologies of interest included IMCO sintered carbide shredder hammer tips, Fives Cail MillMax mills, planetary mill gearboxes, Bosch Projects chainless diffusers, Fives Cail Zuka centrifugals and Vaperma Siftek membrane systems.
Resumo:
Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, Bactrocera carambolae Drew & Hancock, and Bactrocera invadens Drew, Tsuruta & White are four horticultural pest tephritid fruit fly species that are highly similar, morphologically and genetically, to the destructive pest, the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). This similarity has rendered the discovery of reliable diagnostic characters problematic, which, in view of the economic importance of these taxa and the international trade implications, has resulted in ongoing difficulties for many areas of plant protection and food security. Consequently, a major international collaborative and integrated multidisciplinary research effort was initiated in 2009 to build upon existing literature with the specific aim of resolving biological species limits among B. papayae, B. philippinensis, B. carambolae, B. invadens and B. dorsalis to overcome constraints to pest management and international trade. Bactrocera philippinensis has recently been synonymized with B. papayae as a result of this initiative and this review corroborates that finding; however, the other names remain in use. While consistent characters have been found to reliably distinguish B. carambolae from B. dorsalis, B. invadens and B. papayae, no such characters have been found to differentiate the latter three putative species. We conclude that B. carambolae is a valid species and that the remaining taxa, B. dorsalis, B. invadens and B. papayae, represent the same species. Thus, we consider B. dorsalis (Hendel) as the senior synonym of B. papayae Drew and Hancock syn.n. and B. invadens Drew, Tsuruta & White syn.n. A redescription of B. dorsalis is provided. Given the agricultural importance of B. dorsalis, this taxonomic decision will have significant global plant biosecurity implications, affecting pest management, quarantine, international trade, postharvest treatment and basic research. Throughout the paper, we emphasize the value of independent and multidisciplinary tools in delimiting species, particularly in complicated cases involving morphologically cryptic taxa.
Resumo:
Natural free convection is a process of great importance in disciplines from hydrology to meteorology, oceanography, planetary sciences, and economic geology, and for applications in carbon sequestration and nuclear waste disposal. It has been studied for over a century - but almost exclusively in theoretical and laboratory settings, Despite its importance, conclusive primary evidence of free convection in porous media does not currently exist in a natural field setting. Here, we present recent electrical resistivity measurements from a sabkha aquifer near Abu Dhabi, United Arab Emirates, where large density inversions exist. The geophysical images from this site provide, for the first time, compelling field evidence of fingering associated with natural free convection in groundwater.
Resumo:
For future planetary robot missions, multi-robot-systems can be considered as a suitable platform to perform space mission faster and more reliable. In heterogeneous robot teams, each robot can have different abilities and sensor equipment. In this paper we describe a lunar demonstration scenario where a team of mobile robots explores an unknown area and identifies a set of objects belonging to a lunar infrastructure. Our robot team consists of two exploring scout robots and a mobile manipulator. The mission goal is to locate the objects within a certain area, to identify the objects, and to transport the objects to a base station. The robots have a different sensor setup and different capabilities. In order to classify parts of the lunar infrastructure, the robots have to share the knowledge about the objects. Based on the different sensing capabilities, several information modalities have to be shared and combined by the robots. In this work we propose an approach using spatial features and a fuzzy logic based reasoning for distributed object classification.
Resumo:
The Australian food system significantly contributes to a range of key environmental issues including harmful greenhouse gas emissions, air pollution, soil desertification, biodiversity loss and water scarcity. At the same time, the Australian s food system is a key cause of public health nutrition issues that stem from the co-existence of over- and under-consumption of dietary energy and nutrients. Within these challenges lie synergies and opportunities because a diet that has a lower environmental impact generally aligns with good nutrition. Australian State and Federal initiatives to influence food consumption patterns focus on individual body weight and ‘soft law’ interventions. These regulatory approaches, by focusing on select symptoms of food system failures, are fragmented, reductionist and inefficient. In order to illustrate this point, this paper will explore Australian regulatory responses to diet-related illnesses. The analysis will support the argument that only when regulatory responses to diets become embedded within reform of the current food system will substantial improvements to human and planetary health be achieved.
Resumo:
Accurate radiocarbon dating of marine samples requires knowledge of the marine radiocarbon reservoir effect. This effect for a particular site/region is generally assumed constant through time when calibrating marine 14C ages. However, recent studies have shown large temporal variations of several hundred to a couple of thousand years in this effect for a number of regions during the late Quaternary and Holocene. Here we report marine radiocarbon reservoir correction (ΔRΔR) for Heron Reef and Moreton Bay in southwestern (SW) Pacific for the last 8 ka derived from 14C analysis of 230Th-dated corals. Most of our ΔRΔR for the last ∼5.4 ka agree well with their modern value, but large ΔRΔR variability of ∼410 yr (from trough to peak) with possible decadal/centennial fluctuations is evident for the period ∼5.4–8 ka. The latter time interval also has significant variations with similar features in previously published ΔRΔR values for other sites in the Pacific, including southern Peru–northern Chile in southeastern (SE) Pacific, the South China Sea, Vanuatu and Papua New Guinea, with the largest magnitude of ∼920 yr from SE Pacific. The mechanisms for these large ΔRΔR variations across the Pacific during the mid-Holocene are complex processes involving (1) changes in the quantity and 14C content of upwelled waters in tropical east Pacific (TEP) (frequency and intensity of ocean upwelling in the TEP, and contribution of Subantarctic Mode Water to the upwelled waters, which is influenced by the intensity and position of southern westerly winds), and (2) variations in ocean circulation associated with climate change (La Niña/El Niño conditions, intensity of easterly trade winds, positions of the Intertropical Convergence Zone and the South Pacific Convergence Zone), which control the spreading of the older upwelled surface waters in the TEP to the western sites. Our results imply the need for employing temporal changes in ΔRΔR values, instead of constant (modern) values, for age calibration of Holocene marine samples not only for the SW Pacific sites but also for other tropical and subtropical sites in the Pacific.
Resumo:
Management of a pandemic engages multiple sites where previously settled or uncontroversial understandings may be transformed by global and domestic forces. This article examines the iconography of social distancing implicated in the discourses of ‘quarantine’ and ‘risk control’ in public health, and the tension between scientific and popular media readings of the contours of acceptable public health models for managing particular pandemics. The role of culture in shaping and reshaping borders at an operational level is explored as a basis for explaining the apparent paradoxes in the way historic and contemporary pandemics are actually managed, and the different ways particular pandemics are framed. The article argues that a rational-scientific approach to pandemic management is insufficient and that a more nuanced socio-political blend of science, culture and public perceptions offers a more substantial basis for public health policy.
Resumo:
The passion to eradicate alterity from the earth is also the passion for the home, the country, the dwelling, that authorizes this desire and rewards it. In its nationalism, parochialism and racism it constitutes a public and private neurosis. So, unwinding the rigid understanding of place that apparently permits me to speak, that guarantees my voice, my power, is not simply to disperse my locality within the wider coordinates of an ultimate planetary context. That would merely absolve me of responsibility in the name of an abstract and generic globalism, permitting my inheritance to continue uninterrupted in the vagaries of a new configuration. There is something altogether more precise and more urgent involved. For in the horror of the unhomely pulses the dread for the dispersal of Western humankind: the dread of a rationality confronted with what exceeds and slips its grasp. (Chambers, 2001, p. 196)
Resumo:
The effectiveness of any trapping system is highly dependent on the ability to accurately identify the specimens collected. For many fruit fly species, accurate identification (= diagnostics) using morphological or molecular techniques is relatively straightforward and poses few technical challenges. However, nearly all genera of pest tephritids also contain groups of species where single, stand-alone tools are not sufficient for accurate identification: such groups include the Bactrocera dorsalis complex, the Anastrepha fraterculus complex and the Ceratitis FAR complex. Misidentification of high-impact species from such groups can have dramatic consequences and negate the benefits of an otherwise effective trapping program. To help prevent such problems, this chapter defines what is meant by a species complex and describes in detail how the correct identification of species within a complex requires the use of an integrative taxonomic approach. Integrative taxonomy uses multiple, independent lines of evidence to delimit species boundaries, and the underpinnings of this approach from both the theoretical speciation literature and the systematics/taxonomy literature are described. The strength of the integrative approach lies in the explicit testing of hypotheses and the use of multiple, independent species delimitation tools. A case is made for a core set of species delimitation tools (pre- and post-zygotic compatibility tests, multi-locus phylogenetic analysis, chemoecological studies, and morphometric and geometric morphometric analyses) to be adopted as standards by tephritologists aiming to resolve economically important species complexes. In discussing the integrative approach, emphasis is placed on the subtle but important differences between integrative and iterative taxonomy. The chapter finishes with a case study that illustrates how iterative taxonomy applied to the B. dorsalis species complex led to incorrect taxonomic conclusions, which has had major implications for quarantine, trade, and horticultural pest management. In contrast, an integrative approach to the problem has resolved species limits in this taxonomically difficult group, meaning that robust diagnostics are now available.
Resumo:
Tephritid fruit flies (Diptera: Tephritidae) are considered by far the most important group of horticultural pests worldwide. Female fruit flies lay eggs directly into ripening fruit, where the maggots feed causing fruit loss. Each and every continent is plagued by a number of fruit fly pests, both indigenous as well as invasive ones, causing tremendous economic losses. In addition to the direct losses through damage, they can negatively impact commodity trade through restrictions to market access. The quarantine and regulatory controls put in place to manage them are expensive, while the on-farm control costs and loss of crop affect the general well-being of growers. These constraints can have huge implications on loss in revenues and limitations to developing fruit and vegetable-based agroindustries in developing, emergent and developed nations. Because fruit flies are a global problem, the study of their biology and management requires significant international attention to overcome the hurdles they pose. The Joint Food and Agriculture Organisation / International Atomic Energy Agency (FAO/IAEA) Programme on Nuclear Techniques in Food and Agriculture has been on the foreground in assisting Member States in developing and validating environment-friendly fruit fly suppression systems to support viable fresh fruit and vegetable production and export industries. Such international attention has resulted in the successful development and validation of a Sterile Insect Technique (SIT) package for the Mediterranean fruit fly. Although demands for R&D support with respect to Mediterranean fruit fly are diminishing due to successful integration of this package into sustainable control programmes against this pest in many countries, there were increasing demands from Member States in Africa, Asia and Latin America, to address other major fruit fly pests and a related, but sometimes neglected issue of tephritid species complexes of economic importance. Any research, whether it is basic or applied, requires a taxonomic framework that provides reliable and universally recognized entities and names. Among the currently recognized major fruit fly pests, there are groups of species whose morphology is very similar or identical, but biologically they are distinct species. As such, some insect populations that are grouped taxonomically within the same pest species, display different biological and genetic traits and show reproductive isolation which suggest that they are different species. On the other hand, different species may have been taxonomically described, but there may be doubt as to whether they actually represent distinct biological species or merely geographical variants of the same species. This uncertain taxonomic status has practical implications on the effective development and use of the SIT against such complexes, particularly at the time of determining which species to mass-rear, and significantly affects international movement of fruit and vegetables through the establishment of trade barriers to important agricultural commodities which are hosts to these pest tephritid species...
Resumo:
Terrain traversability estimation is a fundamental requirement to ensure the safety of autonomous planetary rovers and their ability to conduct long-term missions. This paper addresses two fundamental challenges for terrain traversability estimation techniques. First, representations of terrain data, which are typically built by the rover’s onboard exteroceptive sensors, are often incomplete due to occlusions and sensor limitations. Second, during terrain traversal, the rover-terrain interaction can cause terrain deformation, which may significantly alter the difficulty of traversal. We propose a novel approach built on Gaussian process (GP) regression to learn, and consequently to predict, the rover’s attitude and chassis configuration on unstructured terrain using terrain geometry information only. First, given incomplete terrain data, we make an initial prediction under the assumption that the terrain is rigid, using a learnt kernel function. Then, we refine this initial estimate to account for the effects of potential terrain deformation, using a near-to-far learning approach based on multitask GP regression. We present an extensive experimental validation of the proposed approach on terrain that is mostly rocky and whose geometry changes as a result of loads from rover traversals. This demonstrates the ability of the proposed approach to accurately predict the rover’s attitude and configuration in partially occluded and deformable terrain.
Resumo:
This paper discusses my current research which aims to re-member the site of the Peel Island Lazaret through re-imagining the Teerk Roo Ra forest as a series of animated artworks. Teerk Roo Ra National Park (formally known as Peel Island) is a small island in Moreton Bay, Queensland and is visible on the ferry journey from Cleveland to Stradbroke Island. The island has an intriguing history, and is the site of a former Lazaret and quarantine station. The Lazaret treated patients diagnosed with Hansen’s disease (or Leprosy), and operated between 1907 and 1959. In this paper I will discuss conceptions of the non-indigenous historical context of the Peel Island Lazaret and the notion of the liminal state (Turner,1967). Through this discussion conceptions of place from Australian cultural theorist Ross Gibson are also examined. The concept of two overlapping realms is then explored through the clues and shared stories about the people who inhabited the site. There is then an explanation of my own approach to re-member this place through re-imagining the forest that witnessed the events of the Lazaret. I then draw on theories of the uncanny from German Psychiatrist Ernst Jentsch, Austrian Neurologist Sigmund Freud and South African animation theorist Meg Rickards to argue that my experience of the forest of Teerk Roo Ra was an uncanny experience where two worlds or states of mind existed simultaneously and overlapped, causing a viscerally unsettling uncanny experience. Through an analysis of Czech Surrealist Animator Jan Švankmajer’s cinematic narrative Down to the cellar (1982), my creative work Structure #24(2011), and Australian Artist Patricia Piccinini’s cinematic artwork The Gathering (2007), I discuss the situation of the inanimate and the animate co-existing simultaneously. Using this approach I propose an understanding of the uncanny as an intellectual uncertainty as outlined by Jentsch (1906). I also develop the notion of the familiar being concealed and becoming unfamiliar through mimicry (Freud, 1919). These discussions form an introduction to my creative work Nocturne #5(2014) which re-members the forests of Teerk Roo Ra as an uncanny place primarily expressed through animation.
Resumo:
Natural history collections are an invaluable resource housing a wealth of knowledge with a long tradition of contributing to a wide range of fields such as taxonomy, quarantine, conservation and climate change. It is recognized however [Smith and Blagoderov 2012] that such physical collections are often heavily underutilized as a result of the practical issues of accessibility. The digitization of these collections is a step towards removing these access issues, but other hurdles must be addressed before we truly unlock the potential of this knowledge.
Resumo:
This thesis used multidisciplinary approaches which greatly enhance our understanding of population structure and can be particularly powerful tools for resolving variation of melon fly over geographic and temporal scales, and for determining invasive pathways. The results from this thesis reinforce the value of integrating multiple data sets to better understand and resolve natural variation within an important pest to determine whether there are cryptic species, discrete lineages or host races, and to identify dispersal pathways in an invasive pest. These results are instructive for regional biosecurity, trade and quarantine, and provide important background for future area-wide management programmes. The integrative methodology adopted in this thesis is applicable to a variety of other insect pests.