434 resultados para Numerical integration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The numerical modelling of electromagnetic waves has been the focus of many research areas in the past. Some specific applications of electromagnetic wave scattering are in the fields of Microwave Heating and Radar Communication Systems. The equations that govern the fundamental behaviour of electromagnetic wave propagation in waveguides and cavities are the Maxwell's equations. In the literature, a number of methods have been employed to solve these equations. Of these methods, the classical Finite-Difference Time-Domain scheme, which uses a staggered time and space discretisation, is the most well known and widely used. However, it is complicated to implement this method on an irregular computational domain using an unstructured mesh. In this work, a coupled method is introduced for the solution of Maxwell's equations. It is proposed that the free-space component of the solution is computed in the time domain, whilst the load is resolved using the frequency dependent electric field Helmholtz equation. This methodology results in a timefrequency domain hybrid scheme. For the Helmholtz equation, boundary conditions are generated from the time dependent free-space solutions. The boundary information is mapped into the frequency domain using the Discrete Fourier Transform. The solution for the electric field components is obtained by solving a sparse-complex system of linear equations. The hybrid method has been tested for both waveguide and cavity configurations. Numerical tests performed on waveguides and cavities for inhomogeneous lossy materials highlight the accuracy and computational efficiency of the newly proposed hybrid computational electromagnetic strategy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A road traffic noise prediction model (ASJ MODEL-1998) has been integrated with a road traffic simulator (AVENUE) to produce the Dynamic areawide Road traffic NoisE simulator-DRONE. This traffic-noise-GIS based integrated tool is upgraded to predict noise levels in built-up areas. The integration of traffic simulation with a noise model provides dynamic access to traffic flow characteristics and hence automated and detailed predictions of traffic noise. The prediction is not only on the spatial scale but also on temporal scale. The linkage with GIS gives a visual representation to noise pollution in the form of dynamic areawide traffic noise contour maps. The application of DRONE on a real world built-up area is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire design is an essential part of the overall design procedure of structural steel members and systems. Conventionally, increased fire rating is provided simply by adding more plasterboards to Light gauge Steel Frame (LSF) stud walls, which is inefficient. However, recently Kolarkar & Mahendran (2008) developed a new composite wall panel system, where the insulation was located externally between the plasterboards on both sides of the steel wall frame. Numerical and experimental studies were undertaken to investigate the structural and fire performance of LSF walls using the new composite panels under axial compression. This paper presents the details of the numerical studies of the new LSF walls and the results. It also includes brief details of the experimental studies. Experimental and numerical results were compared for the purpose of validating the developed numerical model. The paper also describes the structural and fire performance of the new LSF wall system in comparison to traditional wall systems using cavity insulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by a Caputo fractional derivative, and the second order space derivative by a symmetric fractional derivative. First, a method of separating variables expresses the analytical solution of the TSS-FDE in terms of the Mittag--Leffler function. Second, we propose two numerical methods to approximate the Caputo time fractional derivative: the finite difference method; and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional Fokker-Planck equations (FFPEs) have gained much interest recently for describing transport dynamics in complex systems that are governed by anomalous diffusion and nonexponential relaxation patterns. However, effective numerical methods and analytic techniques for the FFPE are still in their embryonic state. In this paper, we consider a class of time-space fractional Fokker-Planck equations with a nonlinear source term (TSFFPE-NST), which involve the Caputo time fractional derivative (CTFD) of order α ∈ (0, 1) and the symmetric Riesz space fractional derivative (RSFD) of order μ ∈ (1, 2). Approximating the CTFD and RSFD using the L1-algorithm and shifted Grunwald method, respectively, a computationally effective numerical method is presented to solve the TSFFPE-NST. The stability and convergence of the proposed numerical method are investigated. Finally, numerical experiments are carried out to support the theoretical claims.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional Fokker–Planck equations have been used to model several physical situations that present anomalous diffusion. In this paper, a class of time- and space-fractional Fokker–Planck equations (TSFFPE), which involve the Riemann–Liouville time-fractional derivative of order 1-α (α(0, 1)) and the Riesz space-fractional derivative (RSFD) of order μ(1, 2), are considered. The solution of TSFFPE is important for describing the competition between subdiffusion and Lévy flights. However, effective numerical methods for solving TSFFPE are still in their infancy. We present three computationally efficient numerical methods to deal with the RSFD, and approximate the Riemann–Liouville time-fractional derivative using the Grünwald method. The TSFFPE is then transformed into a system of ordinary differential equations (ODE), which is solved by the fractional implicit trapezoidal method (FITM). Finally, numerical results are given to demonstrate the effectiveness of these methods. These techniques can also be applied to solve other types of fractional partial differential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a time and space-symmetric fractional diffusion equation (TSS-FDE) under homogeneous Dirichlet conditions and homogeneous Neumann conditions. The TSS-FDE is obtained from the standard diffusion equation by replacing the first-order time derivative by the Caputo fractional derivative and the second order space derivative by the symmetric fractional derivative. Firstly, a method of separating variables is used to express the analytical solution of the tss-fde in terms of the Mittag–Leffler function. Secondly, we propose two numerical methods to approximate the Caputo time fractional derivative, namely, the finite difference method and the Laplace transform method. The symmetric space fractional derivative is approximated using the matrix transform method. Finally, numerical results are presented to demonstrate the effectiveness of the numerical methods and to confirm the theoretical claims.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel method for integrating GPS position estimates with position and attitude estimates derived from visual odometry using a scheme similar to a classic loosely-coupled GPS/INS integration. Under such an arrangement, we derive the error dynamics of the system and develop a Kalman Filter for estimating the errors in position and attitude. Using a control-based approach to observability, we show that the errors in both position and attitude (including yaw) are fully observable when there is a component of acceleration perpendicular to the velocity vector in the navigation frame. Numerical simulations are performed to confirm the observability analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose - This paper seeks to examine the complex relationships between urban planning, infrastructure management, sustainable urban development, and to illustrate why there is an urgent need for local governments to develop a robust planning support system which integrates with advance urban computer modelling tools to facilitate better infrastructure management and improve knowledge sharing between the community, urban planners, engineers and decision makers. Design/methodology/approach - The methods used in this paper includes literature review and practical project case observations. Originality/value - This paper provides an insight of how the Brisbane's planning support system established by Brisbane City Council has significantly improved the effectiveness of urban planning, infrastructure management and community engagement through better knowledge management processes. Practical implications - This paper presents a practical framework for setting up a functional planning support system within local government. The integration of the Brisbane Urban Growth model, Virtual Brisbane and the Brisbane Economic Activity Monitoring (BEAM) database have proven initially successful to provide a dynamic platform to assist elected officials, planners and engineers to understand the limitations of the local environment, its urban systems and the planning implications on a city. With the Brisbane's planning support system, planners and decision makers are able to provide better planning outcomes, policy and infrastructure that adequately address the local needs and achieve sustainable spatial forms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The health of tollbooth workers is seriously threatened by long-term exposure to polluted air from vehicle exhausts. Using traffic data collected at a toll plaza, vehicle movements were simulated by a system dynamics model with different traffic volumes and toll collection procedures. This allowed the average travel time of vehicles to be calculated. A three-dimension Computational Fluid Dynamics (CFD) model was used with a k–ε turbulence model to simulate pollutant dispersion at the toll plaza for different traffic volumes and toll collection procedures. It was shown that pollutant concentration around tollbooths increases as traffic volume increases. Whether traffic volume is low or high (1500 vehicles/h or 2500 vehicles/h), pollutant concentration decreases if electronic toll collection (ETC) is adopted. In addition, pollutant concentration around tollbooths decreases as the proportion of ETC-equipped vehicles increases. However, if the proportion of ETC-equipped vehicles is very low and the traffic volume is not heavy, then pollutant concentration increases as the number of ETC lanes increases.