92 resultados para Moles (Animals)
Resumo:
Abstract Alcohol dependence is a disease that impacts millions of individuals worldwide. There has been some progress with pharmacotherapy for alcohol-dependent individuals; however, there remains a critical need for the development of novel and additional therapeutic approaches. Alcohol and nicotine are commonly abused together, and there is evidence that neuronal nicotinic acetylcholine receptors (nAChRs) play a role in both alcohol and nicotine dependence. Varenicline, a partial agonist at the alpha4beta2 nAChRs, reduces nicotine intake and was recently approved as a smoking cessation aid. We have investigated the role of varenicline in the modulation of ethanol consumption and seeking using three different animal models of drinking. We show that acute administration of varenicline, in doses reported to reduce nicotine reward, selectively reduced ethanol but not sucrose seeking using an operant self-administration drinking paradigm and also decreased voluntary ethanol but not water consumption in animals chronically exposed to ethanol for 2 months before varenicline treatment. Furthermore, chronic varenicline administration decreased ethanol consumption, which did not result in a rebound increase in ethanol intake when the varenicline was no longer administered. The data suggest that the alpha4beta2 nAChRs may play a role in ethanol-seeking behaviors in animals chronically exposed to ethanol. The selectivity of varenicline in decreasing ethanol consumption combined with its reported safety profile and mild side effects in humans suggest that varenicline may prove to be a treatment for alcohol dependence.
Resumo:
To gain insight into melanoma pathogenesis, we characterized an insertional mouse mutant, TG3, that is predisposed to develop multiple melanomas. Physical mapping identified multiple tandem insertions of the transgene into intron 3 of Grm1 (encoding metabotropic glutamate receptor 1) with concomitant deletion of 70 kb of intronic sequence. To assess whether this insertional mutagenesis event results in alteration of transcriptional regulation, we analyzed Grm1 and two flanking genes for aberrant expression in melanomas from TG3 mice. We observed aberrant expression of only Grm1. Although we did not detect its expression in normal mouse melanocytes, Grm1 was ectopically expressed in the melanomas from TG3 mice. To confirm the involvement of Grm1 in melanocytic neoplasia, we created an additional transgenic line with Grm1 expression driven by the dopachrome tautomerase promoter. Similar to the original TG3, the Tg(Grm1)EPv line was susceptible to melanoma. In contrast to human melanoma, these transgenic mice had a generalized hyperproliferation of melanocytes with limited transformation to fully malignant metastasis. We detected expression of GRM1 in a number of human melanoma biopsies and cell lines but not in benign nevi and melanocytes. This study provides compelling evidence for the importance of metabotropic glutamate signaling in melanocytic neoplasia.
Resumo:
p53 is the central member of a critical tumor suppressor pathway in virtually all tumor types, where it is silenced mainly by missense mutations. In melanoma, p53 predominantly remains wild type, thus its role has been neglected. To study the effect of p53 on melanocyte function and melanomagenesis, we crossed the 'high-p53'Mdm4+/- mouse to the well-established TP-ras0/+ murine melanoma progression model. After treatment with the carcinogen dimethylbenzanthracene (DMBA), TP-ras0/+ mice on the Mdm4+/- background developed fewer tumors with a delay in the age of onset of melanomas compared to TP-ras0/+ mice. Furthermore, we observed a dramatic decrease in tumor growth, lack of metastasis with increased survival of TP-ras0/+: Mdm4+/- mice. Thus, p53 effectively prevented the conversion of small benign tumors to malignant and metastatic melanoma. p53 activation in cultured primary melanocyte and melanoma cell lines using Nutlin-3, a specific Mdm2 antagonist, supported these findings. Moreover, global gene expression and network analysis of Nutlin-3-treated primary human melanocytes indicated that cell cycle regulation through the p21WAF1/CIP1 signaling network may be the key anti-melanomagenic activity of p53.
Resumo:
Objective: Simvastatin has been shown to enhance osseointegration of pure titanium implants in osteoporotic rats. This study aimed to evaluate the relationship between the serum level of bone formation markers and the osseointegration of pure titanium implants in osteoporotic rats treated with simvastatin. Materials and methods: Fifty-four female Sprague Dawley rats, aged 3 months old, were randomly divided into three groups: Sham-operated group (SHAM; n=18), ovariectomized group (OVX; n=18), and ovariectomized with Simvastatin treatment group (OVX+SIM; n=18). Fifty-six days after ovariectomy, screw-shaped titanium implants were inserted into the tibiae. Simvastatin was administered orally at 5mg/kg each day after the placement of the implant in the OVX+SIM group. The animals were sacrificed at either 28 or 84 days after implantation and the undecalcified tissue sections were processed for histological analysis. Total alkaline phosphatase (ALP), bone specific alkaline phosphatase (BALP) and bone Gla protein (BGP) were measured in all animal sera collected at the time of euthanasia and correlated with the histological assessment of osseointegration. Results: The level of ALP in the OVX group was higher than the SHAM group at day 28, with no differences between the three groups at day 84. The level of BALP in the OVX+SIM group was significantly higher than both OVX and SHAM groups at days 28 and 84. Compared with day 28, the BALP level of all three groups showed a significant decrease at day 84. There were no significant differences in BGP levels between the three groups at day 28, but at day 84 the OVX+SIM group showed significantly higher levels than both the OVX and SHAM groups. There was a significant increase in BGP levels between days 28 and 84 in the OVX+SIM group. The serum bone marker levels correlated with the histological assessment showing reduced osseointegration in the OVX compared to the SHAM group which is subsequently reversed in the OVX+SIM group.
Resumo:
Solar ultraviolet (UV) radiation causes a range of skin disorders as well as affecting vision and the immune system. It also inhibits development of plants and animals. UV radiation monitoring is used routinely in some locations in order to alert the population to harmful solar radiation levels. There is ongoing research to develop UV-selective-sensors [1–3]. A personal, inexpensive and simple UV-selective-sensor would be desirable to measure UV intensity exposure. A prototype of such a detector has been developed and evaluated in our laboratory. It comprises a sealed two-electrode photoelectrochemical cell (PEC) based on nanocrystalline TiO2. This abundant semiconducting oxide, which is innocuous and very sta-ble, is the subject of intense study at present due to its application in dye sensitized solar cells (DSSC) [4]. Since TiO2 has a wide band gap (EG = 3.0 eV for rutile and EG = 3.2 eV for anatase), it is inher-ently UV-selective, so that UV filters are not required. This further reduces the cost of the proposed photodetector in comparison with conventional silicon detectors. The PEC is a semiconductor–electrolyte device that generates a photovoltage when it is illuminated and a corresponding photocur-rent if the external circuit is closed. The device does not require external bias, and the short circuit current is generally a linear function of illumination intensity. This greatly simplifies the elec-trical circuit needed when using the PEC as a photodetector. DSSC technology, which is based on a PEC containing nanocrystalline TiO2 sensitized with a ruthenium dye, holds out the promise of solar cells that are significantly cheaper than traditional silicon solar cells. The UV-sensor proposed in this paper relies on the cre-ation of electron–hole pairs in the TiO2 by UV radiation, so that it would be even cheaper than a DSSC since no sensitizer dye is needed. Although TiO2 has been reported as a suitable material for UV sensing [3], to the best of our knowledge, the PEC configuration described in the present paper is a new approach. In the present study, a novel double-layer TiO2 structure has been investigated. Fabrication is based on a simple and inexpensive technique for nanostructured TiO2 deposition using microwave-activated chemical bath deposition (MW-CBD) that has been reported recently [5]. The highly transparent TiO2 (anatase) films obtained are densely packed, and they adhere very well to the transparent oxide (TCO) substrate [6]. These compact layers have been studied as contacting layers in double-layer TiO2 structures for DSSC since improvement of electron extraction at the TiO2–TCO interface is expected [7]. Here we compare devices incorporating a single mesoporous nanocrystalline TiO2 structure with devices based on a double structure in which a MW-CBD film is situated between the TCO and the mesoporous nanocrystalline TiO2 layer. Besides improving electron extraction, this film could also help to block recombination of electrons transferred to the TCO with oxidized species in the electrolyte, as has been reported in the case of DSSC for compact TiO2 films obtained by other deposition tech-niques [8,9]. The two types of UV-selective sensors were characterized in detail. The current voltage characteristics, spectral response, inten-sity dependence of short circuit current and response times were measured and analyzed in order to evaluate the potential of sealed mesoporous TiO2-based photoelectrochemical cells (PEC) as low cost personal UV-photodetectors.
Resumo:
This study aimed to clarify the relationship between the mechanical environment at the fracture site and endogenous fibroblast growth factor-2 (FGF-2). We compared two types of fracture healing with different callus formations and cellular events using MouseFix(TM) plate fixation systems for murine fracture models. Left femoral fractures were induced in 72 ten-week-old mice and then fixed with a flexible (Group F) or rigid (Group R) Mouse Fix(TM) plate. Mice were sacrificed on days 3, 5, 7, 10, 14, and 21. The callus volumes were measured by 3D micro-CT and tissues were histologically stained with hematoxylin & eosin or safranin-O. Sections from days 3, 5, and 7 were immunostained for FGF-2 and Proliferating Cell Nuclear Antigen (PCNA). The callus in Group F was significantly larger than that in Group R. The rigid plate allowed bone union without a marked external callus or chondrogenesis. The flexible plate formed a large external callus as a result of endochondral ossification. Fibroblastic cells in the granulation tissue on days 5 and 7 in Group F showed marked FGF-2 expression compared with Group R. Fibroblastic cells showed ongoing proliferation in granulation tissue in group F, as indicated by PCNA expression, which explained the relative granulation tissue increase in group F. There were major differences in early phase endogenous FGF-2 expression between these two fracture healing processes, due to different mechanical environments.
Resumo:
Small animal fracture models have gained increasing interest in fracture healing studies. To achieve standardized and defined study conditions, various variables must be carefully controlled when designing fracture healing experiments in mice or rats. The strain, age and sex of the animals may influence the process of fracture healing. Furthermore, the choice of the fracture fixation technique depends on the questions addressed, whereby intra- and extramedullary implants as well as open and closed surgical approaches may be considered. During the last few years, a variety of different, highly sophisticated implants for fracture fixation in small animals have been developed. Rigid fixation with locking plates or external fixators results in predominantly intramembranous healing in both mice and rats. Locking plates, external fixators, intramedullary screws, the locking nail and the pin-clip device allow different degrees of stability resulting in various amounts of endochondral and intramembranous healing. The use of common pins that do not provide rotational and axial stability during fracture stabilization should be discouraged in the future. Analyses should include at least biomechanical and histological evaluations, even if the focus of the study is directed towards the elucidation of molecular mechanisms of fracture healing using the largely available spectrum of antibodies and gene-targeted animals to study molecular mechanisms of fracture healing. This review discusses distinct requirements for the experimental setups as well as the advantages and pitfalls of the different fixation techniques in rats and mice.
Resumo:
This article presents a two-stage analytical framework that integrates ecological crop (animal) growth and economic frontier production models to analyse the productive efficiency of crop (animal) production systems. The ecological crop (animal) growth model estimates "potential" output levels given the genetic characteristics of crops (animals) and the physical conditions of locations where the crops (animals) are grown (reared). The economic frontier production model estimates "best practice" production levels, taking into account economic, institutional and social factors that cause farm and spatial heterogeneity. In the first stage, both ecological crop growth and economic frontier production models are estimated to calculate three measures of productive efficiency: (1) technical efficiency, as the ratio of actual to "best practice" output levels; (2) agronomic efficiency, as the ratio of actual to "potential" output levels; and (3) agro-economic efficiency, as the ratio of "best practice" to "potential" output levels. Also in the first stage, the economic frontier production model identifies factors that determine technical efficiency. In the second stage, agro-economic efficiency is analysed econometrically in relation to economic, institutional and social factors that cause farm and spatial heterogeneity. The proposed framework has several important advantages in comparison with existing proposals. Firstly, it allows the systematic incorporation of all physical, economic, institutional and social factors that cause farm and spatial heterogeneity in analysing the productive performance of crop and animal production systems. Secondly, the location-specific physical factors are not modelled symmetrically as other economic inputs of production. Thirdly, climate change and technological advancements in crop and animal sciences can be modelled in a "forward-looking" manner. Fourthly, knowledge in agronomy and data from experimental studies can be utilised for socio-economic policy analysis. The proposed framework can be easily applied in empirical studies due to the current availability of ecological crop (animal) growth models, farm or secondary data, and econometric software packages. The article highlights several directions of empirical studies that researchers may pursue in the future.
Resumo:
An SEI metapopulation model is developed for the spread of an infectious agent by migration. The model portrays two age classes on a number of patches connected by migration routes which are used as host animals mature. A feature of this model is that the basic reproduction ratio may be computed directly, using a scheme that separates topography, demography, and epidemiology. We also provide formulas for individual patch basic reproduction numbers and discuss their connection with the basic reproduction ratio for the system. The model is applied to the problem of spatial spread of bovine tuberculosis in a possum population. The temporal dynamics of infection are investigated for some generic networks of migration links, and the basic reproduction ratio is computed—its value is not greatly different from that for a homogeneous model. Three scenarios are considered for the control of bovine tuberculosis in possums where the spatial aspect is shown to be crucial for the design of disease management operations
Resumo:
The gastric-derived orexigenic peptide ghrelin affects brain circuits involved in energy balance as well as in reward. Indeed, ghrelin activates an important reward circuit involved in natural- as well as drug-induced reward, the cholinergic-dopaminergic reward link. It has been hypothesized that there is a common reward mechanism for alcohol and sweet substances in both animals and humans. Alcohol dependent individuals have higher craving for sweets than do healthy controls and the hedonic response to sweet taste may, at least in part, depend on genetic factors. Rat selectively bred for high sucrose intake have higher alcohol consumption than non-sucrose preferring rats and vice versa. In the present study a group of alcohol-consuming individuals selected from a population cohort was investigated for genetic variants of the ghrelin signalling system in relation to both their alcohol and sucrose consumption. Moreover, the effects of GHS-R1A antagonism on voluntary sucrose- intake and operant self-administration, as well as saccharin intake were investigated in preclinical studies using rodents. The effects of peripheral grelin administration on sucrose intake were also examined. Here we found associations with the ghrelin gene haplotypes and increased sucrose consumption, and a trend for the same association was seen in the high alcohol consumers. The preclinical data show that a GHS-R1A antagonist reduces the intake and self-administration of sucrose in rats as well as saccharin intake in mice. Further, ghrelin increases the intake of sucrose in rats. Collectively, our data provide a clear indication that the GHS-R1A antagonists reduces and ghrelin increases the intake of rewarding substances and hence, the central ghrelin signalling system provides a novel target for the development of drug strategies to treat addictive behaviours. © 2011 Landgren et al.
Resumo:
A major obstacle in the development of new medications for the treatment of alcohol use disorders (AUDs) has been the lack of preclinical, oral ethanol consumption paradigms that elicit high consumption. We have previously shown that rats exposed to 20% ethanol intermittently in a two-bottle choice paradigm will consume two times more ethanol than those given continuous access without the use of water deprivation or sucrose fading (5-6 g/kg every 24 h vs 2-3 g/kg every 24 h, respectively). In this study, we have adapted the model to an operant self-administration paradigm. Long-Evans rats were given access to 20% ethanol in overnight sessions on one of two schedules: (1) intermittent (Monday, Wednesday, and Friday) or (2) daily (Monday through Friday). With the progression of the overnight sessions, both groups showed a steady escalation in drinking (3-6 g/kg every 14 h) without the use of a sucrose-fading procedure. Following the acquisition phase, the 20% ethanol groups consumed significantly more ethanol than did animals trained to consume 10% ethanol with a sucrose fade (1.5 vs 0.7 g/kg every 30 min) and reached significantly higher blood ethanol concentrations. In addition, training history (20% ethanol vs 10% ethanol with sucrose fade) had a significant effect on the subsequent self-administration of higher concentrations of ethanol. Administration of the pharmacological stressor yohimbine following extinction caused a significant reinstatement of ethanol-seeking behavior. Both 20% ethanol models show promise and are amenable to the study of maintenance, motivation, and reinstatement. Furthermore, training animals to lever press for ethanol without the use of sucrose fading removes a potential confound from self-administration studies. © 2010 Nature Publishing Group All rights reserved.
Resumo:
The head direction (HD) system in mammals contains neurons that fire to represent the direction the animal is facing in its environment. The ability of these cells to reliably track head direction even after the removal of external sensory cues implies that the HD system is calibrated to function effectively using just internal (proprioceptive and vestibular) inputs. Rat pups and other infant mammals display stereotypical warm-up movements prior to locomotion in novel environments, and similar warm-up movements are seen in adult mammals with certain brain lesion-induced motor impairments. In this study we propose that synaptic learning mechanisms, in conjunction with appropriate movement strategies based on warm-up movements, can calibrate the HD system so that it functions effectively even in darkness. To examine the link between physical embodiment and neural control, and to determine that the system is robust to real-world phenomena, we implemented the synaptic mechanisms in a spiking neural network and tested it on a mobile robot platform. Results show that the combination of the synaptic learning mechanisms and warm-up movements are able to reliably calibrate the HD system so that it accurately tracks real-world head direction, and that calibration breaks down in systematic ways if certain movements are omitted. This work confirms that targeted, embodied behaviour can be used to calibrate neural systems, demonstrates that ‘grounding’ of modeled biological processes in the real world can reveal underlying functional principles (supporting the importance of robotics to biology), and proposes a functional role for stereotypical behaviours seen in infant mammals and those animals with certain motor deficits. We conjecture that these calibration principles may extend to the calibration of other neural systems involved in motion tracking and the representation of space, such as grid cells in entorhinal cortex.
Resumo:
The multiple banded antigen (MBA) is a predicted virulence factor of Ureaplasma species. Antigenic variation of the MBA is a potential mechanism by which ureaplasmas avoid immune recognition and cause chronic infections of the upper genital tract of pregnant women. We tested whether the MBA is involved in the pathogenesis of intra-amniotic infection and chorioamnionitis by injecting virulent or avirulent-derived ureaplasma clones (expressing single MBA variants) into the amniotic fluid of pregnant sheep. At 55 days of gestation pregnant ewes (n = 20) received intra-amniotic injections of virulent-derived or avirulent-derived U. parvum serovar 6 strains (2×104 CFU), or 10B medium (n = 5). Amniotic fluid was collected every two weeks post-infection and fetal tissues were collected at the time of surgical delivery of the fetus (140 days of gestation). Whilst chronic colonisation was established in the amniotic fluid of animals infected with avirulent-derived and virulent-derived ureaplasmas, the severity of chorioamnionitis and fetal inflammation was not different between these groups (p>0.05). MBA size variants (32–170 kDa) were generated in vivo in amniotic fluid samples from both the avirulent and virulent groups, whereas in vitro antibody selection experiments led to the emergence of MBA-negative escape variants in both strains. Anti-ureaplasma IgG antibodies were detected in the maternal serum of animals from the avirulent (40%) and virulent (55%) groups, and these antibodies correlated with increased IL-1β, IL-6 and IL-8 expression in chorioamnion tissue (p<0.05). We demonstrate that ureaplasmas are capable of MBA phase variation in vitro; however, ureaplasmas undergo MBA size variation in vivo, to potentially prevent eradication by the immune response. Size variation of the MBA did not correlate with the severity of chorioamnionitis. Nonetheless, the correlation between a maternal humoral response and the expression of chorioamnion cytokines is a novel finding. This host response may be important in the pathogenesis of inflammation-mediated adverse pregnancy outcomes.