127 resultados para Micro-aggregation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

To identify potential migraine therapeutics, extracts of eighteen plants were screened to detect plant constituents affecting ADP induced platelet aggregation and [14C]5-hydroxytryptamine (5-HT) release. Extracts of the seven plants exhibiting significant inhibition of platelet function were reanalysed in the presence of polyvinyl pyrrolidone (PVP) to remove polyphenolic tannins that precipitate proteins. Two of these extracts no longer exhibited inhibition of platelet activity after removal of tannins. However, extracts of Crataegus monogyna, Ipomoea pes-caprae, Eremophila freelingii, Eremophila longifolia, and Asteromyrtus symphyocarpa still potently inhibited ADP induced human platelet [14C]5-HT release in vitro, with levels ranging from 62 to 95% inhibition. I. pes-caprae, and C. monogyna also caused significant inhibition of ADP induced platelet aggregation. All of these plants have been previously used as traditional headache treatments, except for C. monogyna which is used primarily for protective effects on the cardiovascular system. Further studies elucidating the compounds that are responsible for these anti-platelet effects are needed to determine their exact mechanism of action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this paper is examine how firms renew their organisational capabilities based on micro organisational processes. Organisational capability development literature points to firms’ failure in capability renewal process. To overcome this inefficiency, it is proposed to integrate dynamic capability and ambidexterity perspectives by studying knowledge integration within product innovation. In this relation, applying micro perspective in studying technology diffusion within Iranian Auto industry revealed micro co-evolutionary relationships between knowledge integration within product innovation and capability development. Furthermore, based on near decomposability principals, the analysis suggested relationships among modularity of product architecture, modularity of organisational modularity and modularity of industry architecture in downstream and upstream value chain. Based on these micro-macro co evolutionary effects, capability development process underlying successful corporate entrepreneurship may be verified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION It is known that the vascular morphology and functionality are changed following closed soft tissue trauma (CSTT) [1], and bone fractures [2]. The disruption of blood vessels may lead to hypoxia and necrosis. Currently, most clinical methods for the diagnosis and monitoring of CSTT with or without bone fractures are primarily based on qualitative measures or practical experience, making the diagnosis subjective and inaccurate. There is evidence that CSTT and early vascular changes following the injury delay the soft tissue tissue and bone healing [3]. However, a precise qualitative and quantitative morphological assessment of vasculature changes after trauma is currently missing. In this research, we aim to establish a diagnostic framework to assess the 3D vascular morphological changes after standardized CSTT in a rat model qualitatively and quantitatively using contrast-enhanced micro-CT imaging. METHODS An impact device was used for the application of a controlled reproducible CSTT to the left thigh (Biceps Femoris) of anaesthetized male Wistar rats. After euthanizing the animals at 6 hours, 24 hours, 3 days, 7 days, or 14 days after trauma, CSTT was qualitatively evaluated by macroscopic visual observation of the skin and muscles. For visualization of the vasculature, the blood vessels of sacrificed rats were flushed with heparinised saline and then perfused with a radio-opaque contrast agent (Microfil, MV 122, Flowtech, USA) using an infusion pump. After allowing the contrast agent to polymerize overnight, both hind-limbs were dissected, and then the whole injured and contra-lateral control limbs were imaged using a micro-CT scanner (µCT 40, Scanco Medical, Switzerland) to evaluate the vascular morphological changes. Correlated biopsy samples were also taken from the CSTT region of both injured and control legs. The morphological parameters such as the vessel volume ratio (VV/TV), vessel diameter (V.D), spacing (V.Sp), number (V.N), connectivity (V.Conn) and the degree of anisotropy (DA) were then quantified by evaluating the scans of biopsy samples using the micro-CT imaging system. RESULTS AND DISCUSSION A qualitative evaluation of the CSTT has shown that the developed impact protocols were capable of producing a defined and reproducible injury within the region of interest (ROI), resulting in a large hematoma and moderate swelling in both lateral and medial sides of the injured legs. Also, the visualization of the vascular network using 3D images confirmed the ability to perfuse the large vessels and a majority of the microvasculature consistently (Figure 1). Quantification of the vascular morphology obtained from correlated biopsy samples has demonstrated that V.D and V.N and V.Sp were significantly higher in the injured legs 24 hours after impact in comparison with the control legs (p<0.05). The evaluation of the other time points is currently progressing. CONCLUSIONS The findings of this research will contribute to a better understanding of the changes to the vascular network architecture following traumatic injuries and during healing process. When interpreted in context of functional changes, such as tissue oxygenation, this will allow for objective diagnosis and monitoring of CSTT and serve as validation for future non-invasive clinical assessment modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION There is evidence that the reduction of blood perfusion caused by closed soft tissue trauma (CSTT) delays the healing of the affected soft tissues and bone [1]. We hypothesise that the characterisation of vascular morphology changes (VMC) following injury allows us to determine the effect of the injury on tissue perfusion and thereby the severity of the injury. This research therefore aims to assess the VMC following CSTT in a rat model using contrast-enhanced micro-CT imaging. METHODOLOGY A reproducible CSTT was created on the left leg of anaesthetized rats (male, 12 weeks) with an impact device. After euthanizing the animals at 6 and 24 hours following trauma, the vasculature was perfused with a contrast agent (Microfil, Flowtech, USA). Both hind-limbs were dissected and imaged using micro-CT for qualitative comparison of the vascular morphology and quantification of the total vascular volume (VV). In addition, biopsy samples were taken from the CSTT region and scanned to compare morphological parameters of the vasculature between the injured and control limbs. RESULTS AND DISCUSSION While the visual observation of the hindlimb scans showed consistent perfusion of the microvasculature with microfil, enabling the identification of all major blood vessels, no clear differences in the vascular architecture were observed between injured and control limbs. However, overall VV within the region of interest (ROI)was  measured to be higher for the injured limbs after 24h. Also, scans of biopsy samples demonstrated that vessel diameter and density were higher in the injured legs 24h after impact. CONCLUSION We believe these results will contribute to the development of objective diagnostic methods for CSTT based on changes to the microvascular morphology as well as aiding in the validation of future non-invasive clinical assessment modalities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteochondral grafts are common treatment options for joint focal defects due to their excellent functionality. However, the difficulty is matching the topography of host and graft(s) surfaces flush to one another. Incongruence could lead to disintegration particularly when the gap reaches subchondoral region. The aim of this study is therefore to investigate cell response to gap geometry when forming cartilage-cartilage bridge at the interface. The question is what would be the characteristics of such a gap if the cells could bridge across to fuse the edges? To answer this, osteochondral plugs devoid of host cells were prepared through enzymatic decellularization and artificial clefts of different sizes were created on the cartilage surface using laser ablation. High density pellets of heterologous chondrocytes were seeded on the defects and cultured with chondrogenic differentiation media for 35 days. The results showed that the behavior of chondrocytes was a function of gap topography. Depending on the distance of the edges two types of responses were generated. Resident cells surrounding distant edges demonstrated superficial attachment to one side whereas clefts of 150 to 250 µm width experienced cell migration and anchorage across the interface. The infiltration of chondrocytes into the gaps provided extra space for their proliferation and laying matrix; as the result faster filling of the initial void space was observed. On the other hand, distant and fit edges created an incomplete healing response due to the limited ability of differentiated chondrocytes to migrate and incorporate within the interface. It seems that the initial condition of the defects and the curvature profile of the adjacent edges were the prime determinants of the quality of repair; however, further studies to reveal the underlying mechanisms of cells adapting to and modifying the new environment would be of particular interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flow induced shear stress plays an important role in regulating cell growth and distribution in scaffolds. This study sought to correlate wall shear stress and chondrocytes activity for engineering design of micro-porous osteochondral grafts based on the hypothesis that it is possible to capture and discriminate between the transmitted force and cell response at the inner irregularities. Unlike common tissue engineering therapies with perfusion bioreactors in which flow-mediated stress is the controlling parameter, this work assigned the associated stress as a function of porosity to influence in vitro proliferation of chondrocytes. D-optimality criterion was used to accommodate three pore characteristics for appraisal in a mixed level fractional design of experiment (DOE); namely, pore size (4 levels), distribution pattern (2 levels) and density (3 levels). Micro-porous scaffolds (n=12) were fabricated according to the DOE using rapid prototyping of an acrylic-based bio-photopolymer. Computational fluid dynamics (CFD) models were created correspondingly and used on an idealized boundary condition with a Newtonian fluid domain to simulate the dynamic microenvironment inside the pores. In vitro condition was reproduced for the 3D printed constructs seeded by high pellet densities of human chondrocytes and cultured for 72 hours. The results showed that cell proliferation was significantly different in the constructs (p<0.05). Inlet fluid velocity of 3×10-2mms-1 and average shear stress of 5.65×10-2 Pa corresponded with increased cell proliferation for scaffolds with smaller pores in hexagonal pattern and lower densities. Although the analytical solution of a Poiseuille flow inside the pores was found insufficient for the description of the flow profile probably due to the outside flow induced turbulence, it showed that the shear stress would increase with cell growth and decrease with pore size. This correlation demonstrated the basis for determining the relation between the induced stress and chondrocyte activity to optimize microfabrication of engineered cartilaginous constructs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Articular cartilage is the load-bearing tissue that consists of proteoglycan macromolecules entrapped between collagen fibrils in a three-dimensional architecture. To date, the drudgery of searching for mathematical models to represent the biomechanics of such a system continues without providing a fitting description of its functional response to load at micro-scale level. We believe that the major complication arose when cartilage was first envisaged as a multiphasic model with distinguishable components and that quantifying those and searching for the laws that govern their interaction is inadequate. To the thesis of this paper, cartilage as a bulk is as much continuum as is the response of its components to the external stimuli. For this reason, we framed the fundamental question as to what would be the mechano-structural functionality of such a system in the total absence of one of its key constituents-proteoglycans. To answer this, hydrated normal and proteoglycan depleted samples were tested under confined compression while finite element models were reproduced, for the first time, based on the structural microarchitecture of the cross-sectional profile of the matrices. These micro-porous in silico models served as virtual transducers to produce an internal noninvasive probing mechanism beyond experimental capabilities to render the matrices micromechanics and several others properties like permeability, orientation etc. The results demonstrated that load transfer was closely related to the microarchitecture of the hyperelastic models that represent solid skeleton stress and fluid response based on the state of the collagen network with and without the swollen proteoglycans. In other words, the stress gradient during deformation was a function of the structural pattern of the network and acted in concert with the position-dependent compositional state of the matrix. This reveals that the interaction between indistinguishable components in real cartilage is superimposed by its microarchitectural state which directly influences macromechanical behavior.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design of μAV, a palm size open source micro quadrotor constructed on a single Printed Circuit Board. The aim of the micro quadrotor is to provide a lightweight (approximately 86g) and cheap robotic research platform that can be used for a range of robotic applications. One possible application could be a cheap test bed for robotic swarm research. The goal of this paper is to give an overview of the design and capabilities of the micro quadrotor. The micro quadrotor is complete with a 9 Degree of Freedom Inertial Measurement Unit, a Gumstix Overo® Computer-On-Module which can run the widely used Robot Operating System (ROS) for use with other research algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many cell types form clumps or aggregates when cultured in vitro through a variety of mechanisms including rapid cell proliferation, chemotaxis, or direct cell-to-cell contact. In this paper we develop an agent-based model to explore the formation of aggregates in cultures where cells are initially distributed uniformly, at random, on a two-dimensional substrate. Our model includes unbiased random cell motion, together with two mechanisms which can produce cell aggregates: (i) rapid cell proliferation, and (ii) a biased cell motility mechanism where cells can sense other cells within a finite range, and will tend to move towards areas with higher numbers of cells. We then introduce a pair-correlation function which allows us to quantify aspects of the spatial patterns produced by our agent-based model. In particular, these pair-correlation functions are able to detect differences between domains populated uniformly at random (i.e. at the exclusion complete spatial randomness (ECSR) state) and those where the proliferation and biased motion rules have been employed - even when such differences are not obvious to the naked eye. The pair-correlation function can also detect the emergence of a characteristic inter-aggregate distance which occurs when the biased motion mechanism is dominant, and is not observed when cell proliferation is the main mechanism of aggregate formation. This suggests that applying the pair-correlation function to experimental images of cell aggregates may provide information about the mechanism associated with observed aggregates. As a proof of concept, we perform such analysis for images of cancer cell aggregates, which are known to be associated with rapid proliferation. The results of our analysis are consistent with the predictions of the proliferation-based simulations, which supports the potential usefulness of pair correlation functions for providing insight into the mechanisms of aggregate formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of memory in most behavioral paradigms, including emotional memory paradigms, has focused on the feed forward components that underlie Hebb’s first postulate, associative synaptic plasticity. Hebb’s second postulate argues that activated ensembles of neurons reverberate in order to provide temporal coordination of different neural signals, and thereby facilitate coincidence detection. Recent evidence from our groups has suggested that the lateral amygdala (LA) contains recurrent microcircuits and that these may reverberate. Additionally this reverberant activity is precisely timed with latencies that would facilitate coincidence detection between cortical and sub cortical afferents to the LA.Thus, recent data at the microcircuit level in the amygdala provide some physiological evidence in support of the second Hebbian postulate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characterization of X-ray diffraction, X-ray fluorescence, and field emission scanning electron microscope were used to confirm the successful preparation of Al-substituted goethite with different Al content. The micro-Raman spectroscopy was utilized to investigate the effect of Al content on the goethite lattice. The results show that all the feature bands of goethite shifted to high wavenumbers after the occurrence of Al substitution for Fe in the structure of goethite. The shift of wavenumber shows a good linear relationship as a function of increasing Al content especially for the band at 299 cm−1 (R2 = 0.9992). The in situ Raman spectroscopy of thermally treated goethite indicated that the Al substitution not only hinders the transformation of goethite, but also retarded the crystallization of thermally formed hematite. All the results indicated that Raman spectrum displayed an excellent performance in characterizing Al-substituted goethite, which implied the promising application in other substituted metal oxides or hydroxides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Recently, Taylor et al. reported that use of the BrainLAB m3 microMLC, for stereotactic radiosurgery, results in a decreased out-of-field dose in the direction of leaf-motion compared to the outof- field dose measured in the direction orthogonal to leaf-motion [1]. It was recommended that, where possible, patients should be treated with their superior–inferior axes aligned with the microMLCs leafmotion direction, to minimise out-of-field doses [1]. This study aimed, therefore, to examine the causes of this asymmetry in outof- field dose and, in particular, to establish that a similar recommendation need not be made for radiotherapy treatments delivered by linear accelerators without external micro-collimation systems. Methods Monte Carlo simulations were used to study out-of-field dose from different linear accelerators (the Varian Clinacs 21iX and 600C and the Elekta Precise) with and without internal MLCs and external microMLCs [2]. Results Simulation results for the Varian Clinac 600C linear accelerator with BrainLAB m3 microMLC confirm Taylor et als [1] published experimental data. The out-of-field dose in the leaf motion direction is deposited by lower energy (more obliquely scattered) photons than the out-of-field dose in the orthogonal direction. Linear accelerators without microMLCs produce no asymmetry in out-offield dose. Conclusions The asymmetry in out-of-field dose previously measured by Taylor et al. [1] results from the shielding characteristics of the BrainLAB m3 microMLC device and is not produced by the linear accelerator to which it is attached.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study explores the professional development strategies of digital content professionals in Australian micro businesses. This thesis presents the argument that as these professionals are working in cutting edge creative fields where digital technology drives ongoing change, formal education experiences may be less important than for other professionals, and that specific types of online and face-to-face socially mediated informal learning strategies may be critical to currency. This thesis documents the findings of a broad survey of industry professionals' learning needs and development strategies, in conjunction with rich data from in-depth interviews and social network analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the first steps toward comprehensive characterization of molecular transport within scaffolds for tissue engineering. The scaffolds were fabricated using a novel melt electrospinning technique capable of constructing 3D lattices of layered polymer fibers with well - defined internal microarchitectures. The general morphology and structure order was then determined using T 2 - weighted magnetic resonance imaging and X - ray microcomputed tomography. Diffusion tensor microimaging was used to measure the time - dependent diffusivity and diffusion anisotropy within the scaffolds. The measured diffusion tensors were anisotropic and consistent with the cross - hatched geometry of the scaffolds: diffusion was least restricted in the direction perpendicular to the fiber layers. The results demonstrate that the cross - hatched scaffold structure preferentially promotes molecular transport vertically through the layers ( z - axis), with more restricted diffusion in the directions of the fiber layers ( x – y plane). Diffusivity in the x – y plane was observed to be invariant to the fiber thickness. The characteristic pore size of the fiber scaffolds can be probed by sampling the diffusion tensor at multiple diffusion times. Prospective application of diffusion tensor imaging for the real - time monitoring of tissue maturation and nutrient transport pathways within tissue engineering scaffolds is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional catalyzed thermal CVD of carbon microcoils commonly suffers from poor control of the coil shape and morphology and rarely reaches the nanoscale size range. This article reports on an unconventional Ni-P alloy-catalyzed, high-throughput, highly reproducible CVD of ultra-long carbon coil-like micro- and nano-structures using acetylene precursor at relatively low process temperatures. Helical carbon microcoils with consistently uniform, circular cross-sections and a high degree of crystallinity have been synthesized at 750 °C. A further reduction of the temperature to 650 °C led to the growth of ultra-long (up to several mm) wave-like carbon nanofibers made of two nanowires with the diameters in the 100-200 nm range. The results of the XRD and Raman analysis reveal that the nanofibers feature only a slightly more disordered structure compared to the microcoils. Our results suggest that morphology and structure of the carbon coil-like micro- and nano-structures can be tailored by the appropriate alloying of the catalyst and the choice of the CVD process parameters.