135 resultados para Metabolic aspects
Resumo:
There is increasing momentum in cancer care to implement a two stage assessment process that accurately determines the ability of older patients to cope with, and benefit from, chemotherapy. The two-step approach aims to ensure that patients clearly fit for chemotherapy can be accurately identified and referred for treatment without undergoing a time- and resource-intensive comprehensive geriatric assessment (CGA). Ideally, this process removes the uncertainty of how to classify and then appropriately treat the older cancer patient. After trialling a two-stage screen and CGA process in the Division of Cancer Services at Princess Alexandra Hospital (PAH) in 2011-2012, we implemented a model of oncogeriatric care based on our findings. In this paper, we explore the methodological and practical aspects of implementing the PAH model and outline further work needed to refine the process in our treatment context.
Resumo:
Purpose Commencing selected workouts with low muscle glycogen availability augments several markers of training adaptation compared with undertaking the same sessions with normal glycogen content. However, low glycogen availability reduces the capacity to perform high-intensity (>85% of peak aerobic power (V·O2peak)) endurance exercise. We determined whether a low dose of caffeine could partially rescue the reduction in maximal self-selected power output observed when individuals commenced high-intensity interval training with low (LOW) compared with normal (NORM) glycogen availability. Methods Twelve endurance-trained cyclists/triathletes performed four experimental trials using a double-blind Latin square design. Muscle glycogen content was manipulated via exercise–diet interventions so that two experimental trials were commenced with LOW and two with NORM muscle glycogen availability. Sixty minutes before an experimental trial, subjects ingested a capsule containing anhydrous caffeine (CAFF, 3 mg-1·kg-1 body mass) or placebo (PLBO). Instantaneous power output was measured throughout high-intensity interval training (8 × 5-min bouts at maximum self-selected intensity with 1-min recovery). Results There were significant main effects for both preexercise glycogen content and caffeine ingestion on power output. LOW reduced power output by approximately 8% compared with NORM (P < 0.01), whereas caffeine increased power output by 2.8% and 3.5% for NORM and LOW, respectively, (P < 0.01). Conclusion We conclude that caffeine enhanced power output independently of muscle glycogen concentration but could not fully restore power output to levels commensurate with that when subjects commenced exercise with normal glycogen availability. However, the reported increase in power output does provide a likely performance benefit and may provide a means to further enhance the already augmented training response observed when selected sessions are commenced with reduced muscle glycogen availability. It has long been known that endurance training induces a multitude of metabolic and morphological adaptations that improve the resistance of the trained musculature to fatigue and enhance endurance capacity and/or exercise performance (13). Accumulating evidence now suggests that many of these adaptations can be modified by nutrient availability (9–11,21). Growing evidence suggests that training with reduced muscle glycogen using a “train twice every second day” compared with a more traditional “train once daily” approach can enhance the acute training response (29) and markers representative of endurance training adaptation after short-term (3–10 wk) training interventions (8,16,30). Of note is that the superior training adaptation in these previous studies was attained despite a reduction in maximal self-selected power output (16,30). The most obvious factor underlying the reduced intensity during a second training bout is the reduction in muscle glycogen availability. However, there is also the possibility that other metabolic and/or neural factors may be responsible for the power drop-off observed when two exercise bouts are performed in close proximity. Regardless of the precise mechanism(s), there remains the intriguing possibility that the magnitude of training adaptation previously reported in the face of a reduced training intensity (Hulston et al. (16) and Yeo et al.) might be further augmented, and/or other aspects of the training stimulus better preserved, if power output was not compromised. Caffeine ingestion is a possible strategy that might “rescue” the aforementioned reduction in power output that occurs when individuals commence high-intensity interval training (HIT) with low compared with normal glycogen availability. Recent evidence suggests that, at least in endurance-based events, the maximal benefits of caffeine are seen at small to moderate (2–3 mg·kg-1 body mass (BM)) doses (for reviews, see Refs. (3,24)). Accordingly, in this study, we aimed to determine the effect of a low dose of caffeine (3 mg·kg-1 BM) on maximal self-selected power output during HIT commenced with either normal (NORM) or low (LOW) muscle glycogen availability. We hypothesized that even under conditions of low glycogen availability, caffeine would increase maximal self-selected power output and thereby partially rescue the reduction in training intensity observed when individuals commence HIT with low glycogen availability.
Resumo:
Two independent but inter-related conditions that have a growing impact on healthy life expectancy and health care costs in developed nations are an age-related loss of muscle mass (i.e., sarcopenia) and obesity. Sarcopenia is commonly exacerbated in overweight and obese individuals. Progression towards obesity promotes an increase in fat mass and a concomitant decrease in muscle mass, producing an unfavourable ratio of fat to muscle. The coexistence of diminished muscle mass and increased fat mass (so-called 'sarcobesity') is ultimately manifested by impaired mobility and/or development of life-style-related diseases. Accordingly, the critical health issue for a large proportion of adults in developed nations is how to lose fat mass while preserving muscle mass. Lifestyle interventions to prevent or treat sarcobesity include energy-restricted diets and exercise. The optimal energy deficit to reduce body mass is controversial. While energy restriction in isolation is an effective short-term strategy for rapid and substantial weight loss, it results in a reduction of both fat and muscle mass and therefore ultimately predisposes one to an unfavourable body composition. Aerobic exercise promotes beneficial changes in whole-body metabolism and reduces fat mass, while resistance exercise preserves lean (muscle) mass. Current evidence strongly supports the inclusion of resistance and aerobic exercise to complement mild energy-restricted high-protein diets for healthy weight loss as a primary intervention for sarcobesity.
Resumo:
The chemically reversible solid−solid phase transformation of a TCNQ-modified glassy carbon, indium tin oxide, or metal electrode into Co\[TCNQ]2(H2O)2 material in the presence of Co2+(aq) containing electrolytes has been induced and monitored electrochemically. Voltammetric data reveal that the TCNQ/Co\[TCNQ]2(H2O)2 interconversion process is independent of electrode material and identity of cobalt electrolyte anion. However, a marked dependence on electrolyte concentration, scan rate, and method of electrode modification (drop casting or mechanical attachment) is found. Cyclic voltammetric and double potential step chronoamperometric measurements confirm that formation of Co\[TCNQ]2(H2O)2 occurs through a rate-determining nucleation and growth process that initially involves incorporation of Co2+(aq) ions into the reduced TCNQ crystal lattice at the TCNQ|electrode|electrolyte interface. Similarly, the reverse (oxidation) process, which involves transformation of solid Co\[TCNQ]2(H2O)2 back to parent TCNQ crystals, also is controlled by nucleation−growth kinetics. The overall chemically reversible process that represents this transformation is described by the reaction: 2TCNQ0(s) + 2e- + Co2+(aq) + 2H2O \[Co(TCNQ)2(H2O)2](s). Ex situ SEM images illustrated that this reversible TCNQ/Co\[TCNQ]2(H2O)2 conversion process is accompanied by drastic size and morphology changes in the parent solid TCNQ. In addition, different sizes of needle-shaped nanorod/nanowire crystals of Co\[TCNQ]2(H2O)2 are formed depending on the method of surface immobilization.
Resumo:
The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as histone acetyltransferases or HATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The proinflammatory environment is increasingly being recognised as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential & current development of histone deacetylases for the treatment of diseases for which a proinflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the proinflammatory environment. © 2009 Bentham Science Publishers Ltd.
Resumo:
BACKGROUND/OBJECTIVEs A decline in resting energy expenditure (REE) beyond that predicted from changes in body composition has been noted following dietary-induced weight loss. However, it is unknown whether a compensatory downregulation in REE also accompanies exercise (EX)-induced weight loss, or whether this adaptive metabolic response influences energy intake (EI). SUBJECTS/METHODS Thirty overweight and obese women (body mass index (BMI)=30.6±3.6 kg/m2) completed 12 weeks of supervised aerobic EX. Body composition, metabolism, EI and metabolic-related hormones were measured at baseline, week 6 and post intervention. The metabolic adaptation (MA), that is, difference between predicted and measured REE was also calculated post intervention (MApost), with REE predicted using a regression equation generated in an independent sample of 66 overweight and obese women (BMI=31.0±3.9 kg/m2). RESULTS Although mean predicted and measured REE did not differ post intervention, 43% of participants experienced a greater-than-expected decline in REE (−102.9±77.5 kcal per day). MApost was associated with the change in leptin (r=0.47; P=0.04), and the change in resting fat (r=0.52; P=0.01) and carbohydrate oxidation (r=−0.44; P=0.02). Furthermore, MApost was also associated with the change in EI following EX (r=−0.44; P=0.01). CONCLUSIONS Marked variability existed in the adaptive metabolic response to EX. Importantly, those who experienced a downregulation in REE also experienced an upregulation in EI, indicating that the adaptive metabolic response to EX influences both physiological and behavioural components of energy balance.
Resumo:
Objectives To evaluate the feasibility, acceptability and effects of a Tai Chi and Qigong exercise programme in adults with elevated blood glucose. Design, Setting, and Participants A single group pre–post feasibility trial with 11 participants (3 male and 8 female; aged 42–65 years) with elevated blood glucose. Intervention Participants attended Tai Chi and Qigong exercise training for 1 to 1.5 h, 3 times per week for 12 weeks, and were encouraged to practise the exercises at home. Main Outcome Measures Indicators of metabolic syndrome (body mass index (BMI), waist circumference, blood pressure, fasting blood glucose, triglycerides, HDL-cholesterol); glucose control (HbA1c, fasting insulin and insulin resistance (HOMA)); health-related quality of life; stress and depressive symptoms. Results There was good adherence and high acceptability. There were significant improvements in four of the seven indicators of metabolic syndrome including BMI (mean difference −1.05, p<0.001), waist circumference (−2.80 cm, p<0.05), and systolic (−11.64 mm Hg, p<0.01) and diastolic blood pressure (−9.73 mm Hg, p<0.001), as well as in HbA1c (−0.32%, p<0.01), insulin resistance (−0.53, p<0.05), stress (−2.27, p<0.05), depressive symptoms (−3.60, p<0.05), and the SF-36 mental health summary score (5.13, p<0.05) and subscales for general health (19.00, p<0.01), mental health (10.55, p<0.01) and vitality (23.18, p<0.05). Conclusions The programme was feasible and acceptable and participants showed improvements in metabolic and psychological variables. A larger controlled trial is now needed to confirm these promising preliminary results.
Resumo:
Bacterial siderophores are a group of chemically diverse, virulence-associated secondary metabolites whose expression exerts metabolic costs. A combined bacterial genetic and metabolomic approach revealed differential metabolomic impacts associated with biosynthesis of different siderophore structural families. Despite myriad genetic differences, the metabolome of a cheater mutant lacking a single set of siderophore biosynthetic genes more closely approximate that of a nonpathogenic K12 strain than its isogenic, uropathogen parent strain. Siderophore types associated with greater metabolomic perturbations are less common among human isolates, suggesting that metabolic costs influence success in a human population. Although different siderophores share a common iron acquisition function, our analysis shows how a metabolomic approach can distinguish their relative metabolic impacts in E.coli.
Resumo:
Dermal wound repair involves complex interactions between cells, cytokines and mechanics to close injuries to the skin. In particular, we investigate the contribution of fibroblasts, myofibroblasts, TGFβ, collagen and local tissue mechanics to wound repair in the human dermis. We develop a morphoelastic model where a realistic representation of tissue mechanics is key, and a fibrocontractive model that involves a reasonable approximation to the true kinetics of the important bioactive species. We use each of these descriptions to elucidate the mechanisms that generate pathologies such as hypertrophic scars, contractures and keloids. We find that for hypertrophic scar and contracture development, factors regulating the myofibroblast phenotype are critical, with heightened myofibroblast activation, reduced myofibroblast apoptosis or prolonged inflammation all predicted as mediators for scar hypertrophy and contractures. Prevention of these pathologies is predicted when myofibroblast apoptosis is induced, myofibroblast activation is blocked or TGFβ is neutralised. To investigate keloid invasion, we develop a caricature representation of the fibrocontractive model and find that TGFβ spread is the driving factor behind keloid growth. Blocking activation of TGFβ is found to cause keloid regression. Thus, we recommend myofibroblasts and TGFβ as targets for clinicians when developing intervention strategies for prevention and cure of fibrotic scars.
Resumo:
Two lecture notes describe recent developments of evolutionary multi objective optimization (MO) techniques in detail and their advantages and drawbacks compared to traditional deterministic optimisers. The role of Game Strategies (GS), such as Pareto, Nash or Stackelberg games as companions or pre-conditioners of Multi objective Optimizers is presented and discussed on simple mathematical functions in Part I , as well as their implementations on simple aeronautical model optimisation problems on the computer using a friendly design framework in Part II. Real life (robust) design applications dealing with UAVs systems or Civil Aircraft and using the EAs and Game Strategies combined material of Part I & Part II are solved and discussed in Part III providing the designer new compromised solutions useful to digital aircraft design and manufacturing. Many details related to Lectures notes Part I, Part II and Part III can be found by the reader in [68].
Resumo:
The motion response of marine structures in waves can be studied using finite-dimensional linear-time-invariant approximating models. These models, obtained using system identification with data computed by hydrodynamic codes, find application in offshore training simulators, hardware-in-the-loop simulators for positioning control testing, and also in initial designs of wave-energy conversion devices. Different proposals have appeared in the literature to address the identification problem in both time and frequency domains, and recent work has highlighted the superiority of the frequency-domain methods. This paper summarises practical frequency-domain estimation algorithms that use constraints on model structure and parameters to refine the search of approximating parametric models. Practical issues associated with the identification are discussed, including the influence of radiation model accuracy in force-to-motion models, which are usually the ultimate modelling objective. The illustration examples in the paper are obtained using a freely available MATLAB toolbox developed by the authors, which implements the estimation algorithms described.
Resumo:
Objective: This review focuses on laminitis that develops as a result of metabolic dysfunction and aims to provide a concise assessment of the current state of knowledge on this form of the disease. Outline: The most prevalent form of laminitis is associated with metabolic or endocrinopathic diseases, such as Equine Metabolic Syndrome and pituitary pars intermedia dysfunction, and the feeding of high-energy diets, particularly those rich in non-structural carbohydrates. Insulin dysregulation is the key hormonal imbalance implicated in causing this form of laminitis and hyperinsulinaemia is an important risk factor for the disease. Hyperinsulinaemia can occur in association with insulin resistance, obesity, regionalised adiposity, dysregulated cortisol metabolism and may also be related to other factors, such as breed and genetic predisposition. Recognition of hyperinsulinaemia is best achieved by using a dynamic oral glucose test that can be performed relatively easily under field conditions. Insulin produces a unique pathological lesion in the lamellae and the features of this lesion have informed investigations on the pathogenesis of the disease. Research into the mechanism of disease is continuing so that more targeted therapies than are currently available can be developed. However, dietary restriction and exercise remain effective management strategies for metabolic disease. Conclusions: Although the pathogenic mechanism/s of metabolic and endocrinopathic forms of laminitis remain the subject of intense research, ample data on risk factors for the disease are available. Efforts focussed on preventing the disease should aim to identify metabolic disease and reduce obesity and insulin resistance in at-risk individuals.
Resumo:
As the level of autonomy in Unmanned Aircraft Systems (UAS) increases, there is an imperative need for developing methods to assess robust autonomy. This paper focuses on the computations that lead to a set of measures of robust autonomy. These measures are the probabilities that selected performance indices related to the mission requirements and airframe capabilities remain within regions of acceptable performance.
Resumo:
The aim of the current study was to examine the associations between a number of individual factors (demographic factors (age and gender), personality factors, risk-taking propensity, attitudes towards drink driving, and perceived legitimacy of drink driving enforcement) and how they influence the self-reported likelihood of drink driving. The second aim of this study was to examine the potential of attitudes mediating the relationship between risk-taking and self-reported likelihood of drink driving. In total, 293 Queensland drivers volunteered to participate in an online survey that assessed their self-reported likelihood to drink drive in the next month, demographics, traffic-related demographics, personality factors, risk-taking propensity, attitudes towards drink driving, and perceived legitimacy of drink driving enforcement. An ordered logistic regression analysis was utilised to evaluate the first aim of the study; at the first step the demographic variables were entered; at step two the personality and risk-taking were entered; at the third step, the attitudes and perceptions of legitimacy variables were entered. Being a younger driver and having a high risk-taking propensity were related to self-reported likelihood of drink driving. However, when the attitudes variable was entered, these individual factors were no longer significant; with attitudes being the most important predictor of self-reported drink driving likelihood. A significant mediation model was found with the second aim of the study, such that attitudes mediated the relationship between risk-taking and self-reported likelihood of drink driving. Considerable effort and resources are utilised by traffic authorities to reducing drink driving on the Australian road network. Notwithstanding these efforts, some participants still had some positive attitudes towards drink driving and reported that they were likely to drink drive in the future. These findings suggest that more work is needed to address attitudes regarding the dangerousness of drink driving.