314 resultados para Maximum design load


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the design of a radial flux permanent magnet iron less core brushless DC motor for use in an electric wheel drive with an integrated epicyclic gear reduction. The motor has been designed for a continuous output torque of 30 Nm and peak rating of 60 Nm with a maximum operating speed of 7000 RPM. In the design of brushless DC motors with a toothed iron stator the peak air-gap magnetic flux density is typically chosen to be close to that of the remanence value of the magnets used. This paper demonstrates that for an ironless motor the optimal peak air-gap flux density is closer to the maximum energy product of the magnets used. The use of a radial flux topology allows for high frequency operation and can be shown to give high specific power output while maintaining a relatively low magnet mass. Two-dimensional finite element analysis is used to predict the air-gap flux density. The motor design is based around commonly available NdFeB bar magnet size

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the design of a radial flux permanent magnet ironless core brushless DC motor for use in an electric wheel drive with an integrated epicyclic gear reduction. The motor has been designed for a continuous output torque of 30 Nm and peak rating of 60 Nm with a maximum operating speed of 7000 RPM. In the design of brushless DC motors with a toothed iron stator the peak air-gap magnetic flux density is typically chosen to be close to that of the remanence value of the magnets used. This paper demonstrates that for an ironless motor the optimal peak air-gap flux density is closer to the maximum energy product of the magnets used. The use of a radial flux topology allows for high frequency operation and can be shown to give high specific power output while maintaining a relatively low magnet mass. Two-dimensional finite element analysis is used to predict the airgap flux density. The motor design is based around commonly available NdFeB bar magnet size

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold-formed steel Lipped Channel Beams (LCB) with web openings are commonly used as floor joists and bearers in building structures. Shear behaviour of these beams is more complicated and their shear capacities are considerably reduced by the presence of web openings. Hence detailed numerical and experimental studies of simply supported LCBs under a mid-span load with aspect ratios of 1.0 and 1.5 were undertaken to investigate the shear behaviour and strength of LCBs with web openings. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative. Improved design equations were therefore proposed for the shear strength of LCBs with web openings based on both experimental and numerical results. This research showed a significant reduction in shear capacities of LCBs when large web openings are included for the purpose of locating building services. A cost effective method of eliminating such detrimental effects of large circular web openings was also therefore investigated using experimental and numerical studies. For this purpose LCBS were reinforced using plate, stud, transverse and sleeve stiffeners with varying sizes and thicknesses that were welded and screw-fastened to the web of LCBs. These studies showed that plate stiffeners were the most suitable. Suitable screw-fastened plate stiffener arrangements with optimum thicknesses were then proposed for LCBs with web openings to restore their original shear capacities. This paper presents the details of finite element analyses and experiments of LCBs with web openings in shear, and the development of improved shear design rules. It then describes the experimental and numerical studies to determine the optimum plate stiffener arrangements and the results. The proposed shear design rules in this paper can be considered for inclusion in the future versions of cold-formed steel design codes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates: - correlation between transit route passenger loading and travel distance - its implications on quality of service (QoS) and resource productivity. It uses Automatic Fare Collection (AFC) data across a weekday on a premium bus line in Brisbane, Australia. A composite load-distance factor is proposed as a new measure for profiling transit route on-board passenger comfort QoS. Understanding these measures and their correlation is important for planning, design, and operational activities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives The UK Department for Transport recommends taking a break from driving every 2 h. This study investigated: (i) if a 2 h drive time on a monotonous road is appropriate for OSA patients treated with CPAP, compared with healthy age matched controls, (ii) the impact of a night’s sleep restriction (with CPAP) and (iii) what happens if these patients miss one nights’ CPAP treatment. Methods About 19 healthy men aged 52–74 y (m = 66.2 y) and 19 OSA participants aged 50–75 y (m = 64.4 y) drove an interactive car simulator under monotonous motorway conditions for 2 h on two afternoons, in a counterbalanced design; (1) following a normal night’s sleep (8 h). (2) following a restricted night’s sleep (5 h), with normal CPAP use (3) following a night without CPAP treatment. (n = 11) Lane drifting incidents, indicative of falling asleep, were recorded for up to 2 h depending on competence to continue driving. Results Normal sleep: Controls drove for an average of 95.9 min (s.d. 37 min) and treated OSA drivers for 89.6 min (s.d. 29 min) without incident. 63.2% of controls and 42.1% of OSA drivers successfully completed the drive without an incident. Sleep restriction: 47.4% of controls and 26.3% OSA drivers finished without incident. Overall: controls drove for an average of 89.5 min (s.d. 39 min) and treated OSA drivers 65 min (s.d. 42 min) without incident. The effect of condition was significant [F(1.36) = 9.237, P < 0.05, eta2 = 0.204]. Stopping CPAP: 18.2% of drivers successfully completed the drive. Overall, participants drove for an average of 50.1 min (s.d. 38 min) without incident. The effect of condition was significant [F(2) = 8.8, P < 0.05, eta2 = 0.468]. Conclusion 52.6% of all drivers were able to complete a 2 hour drive under monotonous conditions after a full night’s sleep. Sleep restriction significantly affected both control and OSA drivers. We find evidence that treated OSA drivers are more impaired by sleep restriction than healthy control, as they were less able to sustain safely the 2 h drive without incidents. OSA drivers should be aware that non-compliance with CPAP can significantly impair driving performance. It may be appropriate to recommend older drivers take a break from driving every 90 min especially when undertaking a monotonous drive, as was the case here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates quality of service and resource productivity implications of transit route passenger loading and travel distance. Weekday Automatic Fare Collection data for a premium radial bus route in Brisbane, Australia, is used to investigate correlation between load factor and distance factor. Relationships between boardings and transit work indicate that distance factor generally increases with load factor. Time series analysis is then presented by examining each direction on an hour by hour basis. Inbound correlation is medium to strong across the entire span of service and strong for daytime services up to 19:30, while outbound correlation is strong across the entire span. Passengers tend to be making longer distance, peak direction commuter trips under the least comfortable conditions under stretched peak schedules than off-peak. Therefore productivity gains may be possible by adjusting fleet utilization during off-peak times. Weekday profiles by direction are established for a composite load-distance factor. A threshold corresponding to standing passengers on the Maximum Load Segment reveals that on-board loading and travel distance combined are more severe during the morning inbound peak than evening outbound peak, although the sharpness of the former suggests that encouraging shoulder peak travel during the morning would be more effective than evening peak. Further research suggested includes: consideration of travel duration factor, relating noise within hour to Peak Hour Factor, profiling load-distance factor across a range of case studies, and relating load-distance factor threshold to line length.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper merges the analysis of a case history and the simplified theoretical model related to a rather singular phenomenon that may happen in rotating machinery. Starting from the first, a small industrial steam turbine experienced a very strange behavior during megawatt load. When the unit was approaching the maximum allowed power, the temperature of the babbitt metal of the pads of the thrust bearing showed constant increase with an unrecoverable drift. Bearing inspection showed that pad trailing edge had the typical aspect of electrical pitting. This kind of damage was not reparable and bearing pads had to replaced. This problem occurred several times in sequence and was solved only by adding further ground brushes to the shaft-line. Failure analysis indicated electrodischarge machining as the root fault. A specific model, able to take into consideration the effect of electrical pitting and loading capacity decreasing as a consequence of the damage of the babbitt metal, is proposed in the paper and shows that the phenomenon causes the irretrievable failure of the thrust bearing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Terrorists usually target high occupancy iconic and public buildings using vehicle borne incendiary devices in order to claim a maximum number of lives and cause extensive damage to public property. While initial casualties are due to direct shock by the explosion, collapse of structural elements may extensively increase the total figure. Most of these buildings have been or are built without consideration of their vulnerability to such events. Therefore, the vulnerability and residual capacity assessment of buildings to deliberately exploded bombs is important to provide mitigation strategies to protect the buildings' occupants and the property. Explosive loads and their effects on a building have therefore attracted significant attention in the recent past. Comprehensive and economical design strategies must be developed for future construction. This research investigates the response and damage of reinforced concrete (RC) framed buildings together with their load bearing key structural components to a near field blast event. Finite element method (FEM) based analysis was used to investigate the structural framing system and components for global stability, followed by a rigorous analysis of key structural components for damage evaluation using the codes SAP2000 and LS DYNA respectively. The research involved four important areas in structural engineering. They are blast load determination, numerical modelling with FEM techniques, material performance under high strain rate and non-linear dynamic structural analysis. The response and damage of a RC framed building for different blast load scenarios were investigated. The blast influence region for a two dimensional RC frame was investigated for different load conditions and identified the critical region for each loading case. Two types of design methods are recommended for RC columns to provide superior residual capacities. They are RC columns detailing with multi-layer steel reinforcement cages and a composite columns including a central structural steel core. These are to provide post blast gravity load resisting capacity compared to typical RC column against a catastrophic collapse. Overall, this research broadens the current knowledge of blast and residual capacity analysis of RC framed structures and recommends methods to evaluate and mitigate blast impact on key elements of multi-storey buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Performance of urban transit systems may be quantified and assessed using transit capacity and productive capacity in planning, design and operational management activities. Bunker (4) defines important productive performance measures of an individual transit service and transit line, which are extended in this paper to quantify efficiency and operating fashion of transit services and lines. Comparison of a hypothetical bus line’s operation during a morning peak hour and daytime hour demonstrates the usefulness of productiveness efficiency and passenger transmission efficiency, passenger churn and average proportion line length traveled to the operator in understanding their services’ and lines’ productive performance, operating characteristics, and quality of service. Productiveness efficiency can flag potential pass-up activity under high load conditions, as well as ineffective resource deployment. Proportion line length traveled can directly measure operating fashion. These measures can be used to compare between lines/routes and, within a given line, various operating scenarios and time horizons to target improvements. The next research stage is investigating within-line variation using smart card passenger data and field observation of pass-ups. Insights will be used to further develop practical guidance to operators.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents an optimisation algorithm to maximize the loadability of single wire earth return (SWER) by minimizing the cost of batteries and regulators considering the voltage constraints and thermal limits. This algorithm, that finds the optimum location of batteries and regulators, uses hybrid discrete particle swarm optimization and mutation (DPSO + Mutation). The simulation results on realistic highly loaded SWER network show the effectiveness of using battery to improve the loadability of SWER network in a cost-effective way. In this case, while only 61% of peak load can be supplied without violating the constraints by existing network, the loadability of the network is increased to peak load by utilizing two battery sites which are located optimally. That is, in a SWER system like the studied one, each installed kVA of batteries, optimally located, supports a loadability increase as 2 kVA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microgrid contains both distributed generators (DGs) and loads and can be viewed by a controllable load by utilities. The DGs can be either inertial synchronous generators or non-inertial converter interfaced. Moreover, some of them can come online or go offline in plug and play fashion. The combination of these various types of operation makes the microgrid control a challenging task, especially when the microgrid operates in an autonomous mode. In this paper, a new phase locked loop (PLL) algorithm is proposed for smooth synchronization of plug and play DGs. A frequency droop for power sharing is used and a pseudo inertia has been introduced to non-inertial DGs in order to match their response with inertial DGs. The proposed strategy is validated through PSCAD simulation studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Production of recycled concrete aggregates (RCA) from construction and demolition (C&D) waste has become popular all over the world since the availability of land spaces are limited to dispose. Therefore it is important to seek alternative applications for RCA. The use of RCA in base and sub-base layers in granular pavement is a viable solution. In mechanistic pavement design, rutting (permanent deformation) is considered as the major failure mechanisms of the pavement. The rutting is the accumulation of permanent deformation of pavement layers caused by the repetitive vehicle load. In Queensland, Australia, it is accepted to have the maximum of 20% of reclaimed asphalt pavement (RAP) in RCA and therefore, it is important to investigate the effect of RAP on the permanent deformation properties of RCA. In this study, a series of repeated load triaxial (RLT) tests were conducted on RCA blended with different percentage of RAP to investigate the permanent deformation and resilient modulus properties of RCA. The vertical deformation and resilient modulus values were used to determine the response of RCA for the cyclic loading under standard pressure and loading conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current military conflicts are characterized by the use of the improvised explosive device. Improvements in personal protection, medical care, and evacuation logistics have resulted in increasing numbers of casualties surviving with complex musculoskeletal injuries, often leading to lifelong disability. Thus, there exists an urgent requirement to investigate the mechanism of extremity injury caused by these devices in order to develop mitigation strategies. In addition, the wounds of war are no longer restricted to the battlefield; similar injuries can be witnessed in civilian centers following a terrorist attack. Key to understanding such mechanisms of injury is the ability to deconstruct the complexities of an explosive event into a controlled, laboratory-based environment. In this article, a traumatic injury simulator, designed to recreate in the laboratory the impulse that is transferred to the lower extremity from an anti-vehicle explosion, is presented and characterized experimentally and numerically. Tests with instrumented cadaveric limbs were then conducted to assess the simulator’s ability to interact with the human in two mounting conditions, simulating typical seated and standing vehicle passengers. This experimental device will now allow us to (a) gain comprehensive understanding of the load-transfer mechanisms through the lower limb, (b) characterize the dissipating capacity of mitigation technologies, and (c) assess the bio-fidelity of surrogates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

LiteSteel beam (LSB) is a new cold-formed steel hollow flange channel section produced using a patented manufacturing process involving simultaneous cold-forming and dual electric resistance welding. The LSBs were commonly used as floor joists and bearers with web openings in residential, industrial and commercial buildings. Due to the unique geometry of LSBs, as well as its unique residual stress characteristics and initial geometric imperfections resultant of manufacturing processes, much of the existing research for common cold-formed steel sections is not directly applicable to LSBs. Many research studies have been carried out to evaluate the behaviour and design of LSBs subject to pure bending actions, predominant shear and combined actions. However, to date, no investigation has been conducted into the web crippling behaviour and strength of LSB sections. Hence detailed experimental studies were conducted to investigate the web crippling behaviour and strengths of LSBs under EOF (End One Flange) and IOF (Interior One Flange) load cases. A total of 26 web crippling tests was conducted and the results were compared with current AS/NZS 4600 design rules. This comparison showed that AS/NZS 4600 (SA, 2005) design rules are very conservative for LSB sections under EOF and IOF load cases. Suitable design equations have been proposed to determine the web crippling capacity of LSBs based on experimental results. This paper presents the details of this experimental study on the web crippling behaviour and strengths of LiteSteel beams under EOF and IOF load cases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold-formed steel members are increasingly used as primary structural elements in buildings due to the availability of thin and high strength steels and advanced cold-forming technologies. Cold-formed lipped channel beams (LCB) are commonly used as flexural members such as floor joists and bearers. Many research studies have been carried out to evaluate the behaviour and design of LCBs subject to pure bending actions. However, limited research has been undertaken on the shear behaviour and strength of LCBs. Hence a numerical study was undertaken to investigate the shear behaviour and strength of LCBs. Finite element models of simply supported LCBs with aspect ratios of 1.0 and 1.5 were considered under a mid-span load. They were then validated by comparing their results with test results and used in a detailed parametric study based on the validated finite element models. Numerical studies were conducted to investigate the shear buckling and post-buckling behaviour of LCBs. Experimental and numerical results showed that the current design rules in cold-formed steel structures design codes are very conservative for the shear design of LCBs. Improved design equations were therefore proposed for the shear strength of LCBs. This paper presents the details of this numerical study of LCBs and the results.