106 resultados para Malacostraca, Fossil
Resumo:
Despite tough economic times, the uptake of photovoltaic (PV) technology has seen tremendous growth over the past decade. More than 21 GW of rooftop PV systems were installed globally in the year 2012 alone. This is fueled by various incentives offered by policy makers around the world with a goal of enhancing renewable energy integration and reducing the dependence on fossil fuels. For instance, the goal of achieving 20% energy consumption from renewable resources by 2020 has been unanimously accepted by numerous countries in Europe, North America, and Australia. Uptake of PVs by residential and small businesses has been augmented by generous rebates offered by government on installations and on the amount of energy injected into the grid. Furthermore, the global market outlook report published by EPIA predicts that the rooftop PV installations will continue to grow for the foreseeable future.
Resumo:
This is a musical theatre production with an environmental message addressing a Queensland, Australia tussle between the development of the Galilee Coal Basin and the potential threat to the health of the Great Barrier Reef along the Queensland coast. The drama is enacted by characters representing "goodies" and "baddies" and includes epic poetry, dance, orchestra and drama. The whole performance is enacted in the midst of a post graduate student art exhibition with a coral and coal theme.
Resumo:
The world is facing an energy crisis due to exponential population growth and limited availability of fossil fuels. Carbon, one of the most abundant materials found on earth, and its allotrope forms have been proposed in this project for novel energy generation and storage devices. This studied investigated the synthesis and properties of these carbon nanomaterials for applications in organic solar cells and supercapacitors.
Resumo:
Although road construction and use provides significant economic and social benefits its environmental impact is of growing concern. Roads are one of the greatest greenhouse gas contributors both directly through fossil energy consumed in mining, transporting, earthworks, and paving work, along with in-direct emissions from road use by vehicles. This discussion paper will outline opportunities within the Australian context for reducing environmental pressure in road building and consider the future environmental impacts of road projects.
Resumo:
In 2009, the National Research Council of the National Academies released a report on A New Biology for the 21st Century. The council preferred the term ‘New Biology’ to capture the convergence and integration of the various disciplines of biology. The National Research Council stressed: ‘The essence of the New Biology, as defined by the committee, is integration—re-integration of the many sub-disciplines of biology, and the integration into biology of physicists, chemists, computer scientists, engineers, and mathematicians to create a research community with the capacity to tackle a broad range of scientific and societal problems.’ They define the ‘New Biology’ as ‘integrating life science research with physical science, engineering, computational science, and mathematics’. The National Research Council reflected: 'Biology is at a point of inflection. Years of research have generated detailed information about the components of the complex systems that characterize life––genes, cells, organisms, ecosystems––and this knowledge has begun to fuse into greater understanding of how all those components work together as systems. Powerful tools are allowing biologists to probe complex systems in ever greater detail, from molecular events in individual cells to global biogeochemical cycles. Integration within biology and increasingly fruitful collaboration with physical, earth, and computational scientists, mathematicians, and engineers are making it possible to predict and control the activities of biological systems in ever greater detail.' The National Research Council contended that the New Biology could address a number of pressing challenges. First, it stressed that the New Biology could ‘generate food plants to adapt and grow sustainably in changing environments’. Second, the New Biology could ‘understand and sustain ecosystem function and biodiversity in the face of rapid change’. Third, the New Biology could ‘expand sustainable alternatives to fossil fuels’. Moreover, it was hoped that the New Biology could lead to a better understanding of individual health: ‘The New Biology can accelerate fundamental understanding of the systems that underlie health and the development of the tools and technologies that will in turn lead to more efficient approaches to developing therapeutics and enabling individualized, predictive medicine.’ Biological research has certainly been changing direction in response to changing societal problems. Over the last decade, increasing awareness of the impacts of climate change and dwindling supplies of fossil fuels can be seen to have generated investment in fields such as biofuels, climate-ready crops and storage of agricultural genetic resources. In considering biotechnology’s role in the twenty-first century, biological future-predictor Carlson’s firm Biodesic states: ‘The problems the world faces today – ecosystem responses to global warming, geriatric care in the developed world or infectious diseases in the developing world, the efficient production of more goods using less energy and fewer raw materials – all depend on understanding and then applying biology as a technology.’ This collection considers the roles of intellectual property law in regulating emerging technologies in the biological sciences. Stephen Hilgartner comments that patent law plays a significant part in social negotiations about the shape of emerging technological systems or artefacts: 'Emerging technology – especially in such hotbeds of change as the life sciences, information technology, biomedicine, and nanotechnology – became a site of contention where competing groups pursued incompatible normative visions. Indeed, as people recognized that questions about the shape of technological systems were nothing less than questions about the future shape of societies, science and technology achieved central significance in contemporary democracies. In this context, states face ongoing difficulties trying to mediate these tensions and establish mechanisms for addressing problems of representation and participation in the sociopolitical process that shapes emerging technology.' The introduction to the collection will provide a thumbnail, comparative overview of recent developments in intellectual property and biotechnology – as a foundation to the collection. Section I of this introduction considers recent developments in United States patent law, policy and practice with respect to biotechnology – in particular, highlighting the Myriad Genetics dispute and the decision of the Supreme Court of the United States in Bilski v. Kappos. Section II considers the cross-currents in Canadian jurisprudence in intellectual property and biotechnology. Section III surveys developments in the European Union – and the interpretation of the European Biotechnology Directive. Section IV focuses upon Australia and New Zealand, and considers the policy responses to the controversy of Genetic Technologies Limited’s patents in respect of non-coding DNA and genomic mapping. Section V outlines the parts of the collection and the contents of the chapters.
Resumo:
Engaging in a close analysis of legal and political discourse, this chapter considers conflicts over intellectual property and climate change in three key arenas: climate law; trade law; and intellectual property law. In this chapter, it is argued that there is a need to overcome the political stalemates and deadlocks over intellectual property and climate change. It is essential that intellectual property law engage in a substantive fashion with the matrix of issues surrounding fossil fuels, clean technologies, and climate change at an international level. First, this chapter examines the debate over intellectual property and climate change under the auspices of the United Nations Framework Convention on Climate Change 1992, and the establishment of the UNFCCC Climate Technology Centre and Network. It recommends that the technology mechanism should address and deal with matters of intellectual property management and policy. Second, the piece examines the discussion of global issues in the World Intellectual Property Organization, WIPO GREEN. It supports the proposal for a Global Green Patent Highway to allow for the fast-tracking of intellectual property applications in respect of green technologies. Third, the chapter investigates the dispute in the TRIPS Council at the World Trade Organization over intellectual property, climate change, and development. This section focuses upon the TRIPS Agreement 1994. This chapter calls for a Joint Declaration on Intellectual Property and Climate Change from the UNFCCC, WIPO, and the WTO. The paper concludes that intellectual property should be reformed as part of a larger effort to promote climate justice. Rather than adopt a fragmented, piecemeal approach in various international institutions, there is a need for a co-ordinated and cohesive response to intellectual property in an age of runaway, global climate change. Patent law should be fossil fuel free. Intellectual property should encourage research, development, and diffusion of renewable energy and clean technologies. It is submitted that intellectual property law reform should promote climate justice in line with Mary Robinson’s Declaration on Climate Justice 2013.
Resumo:
This year, there has been great debate over whether Norway’s Sovereign Wealth Fund should invest in renewable energy; divest from fossil fuels; and engage in ethical investment...
Resumo:
The leaked environment chapter of the Trans-Pacfic Partnerships agreement confirms our worst fears - a sellout to fossil fuels and no enforcement ability, write Matthew Rimmer and Charlotte Wood.
Resumo:
Although road construction and use provides significant economic and social benefits, its environmental impact is of growing concern. Roads are one of the greatest greenhouse gas contributors, both directly through fossil energy consumed in mining, transporting, earthworks and paving work, and through the emissions from road use by vehicles. Further,according to the Australian Government, when combined with expected population growth and internal migration,expected changes in temperature and rainfall are expected to increase road maintenance costs. This discussion paper will outline opportunities within the Australian context for reducing environmental and carbon pressure from road building, and provide a framework for considering the potential pressures that will affect the resilience of roads to the impacts of climate change and oil vulnerability.
Resumo:
Energy efficiency as a concept has gained significant attention over the last few decades, as governments and industries around the world have grappled with issues such as rapid population growth and expanding needs for energy, the cost of supplying infrastructure for growing spikes in peak demand, the finite nature of fossil based energy reserves, and managing transition timeframes for expanding renewable energy supplies. Over the last decade in particular, there has been significant growth in understanding the complexity and interconnectedness of these issues, and the centrality of energy efficiency to the engineering profession. Furthermore, there has been a realisation amongst various government departments and education providers that associated knowledge and skill sets to achieve energy efficiency goals are not being sufficiently developed in vocational or higher education. Within this context, this poster discusses the emergence of a national energy efficiency education agenda in Australia, to support embedding such knowledge throughout the engineering curriculum, and throughout career pathways. In particular, the posterprovides insights into the national priorities for capacity building in Australia, and how this is influencing the engineering education community, from undergraduate education through to postgraduate studies and professional development. The poster is intended to assist in raising awareness about the central role of energy efficiency within engineering, significant initiatives by major government, professional, and training organisations, and the increasing availability of high quality energy efficiency engineering education resources. The authors acknowledge the support for and contributions to this poster by the federal Department of Resources, Energy and Tourism, through members of the national Energy Efficiency Advisory Group for engineering education.
Resumo:
Although road construction and use provides significant economic and social benefits, its environmental impact is of growing concern. Roads are one of the greatest greenhouse gas contributors, both directly through fossil energy consumed in mining, transporting, earthworks and paving work, plus the emissions from road use by vehicles. Further, according to the Australian Government, when combined with forecast population growth, internal migration and changes in temperature and rainfall, these are expected to increase road maintenance costs. This discussion paper outlines opportunities within the Australian context for reducing environmental and carbon pressure from road building, and provides a framework for considering the potential future pressures that will affect the resilience of roads to the impacts of climate change and oil vulnerability. Seven strategic areas are outlined for further investigation, including a guide to carbon management for road agencies covering planning, funding, procurement, delivery and maintenance of roads.
Resumo:
As oil use increases at a rate unsustainable for the environment and unmatchable by current levels of oil production, a major shift towards renewable energy is necessary. By expanding the current knowledge of lignin biosynthesis and its manipulation in sugarcane, this PhD contributes to the production of economically viable second generation bioethanol, a fuel produced from plant biomass. The findings of this thesis contribute to the limited knowledge of lignin biosynthesis and deposition in sugarcane, and the application of biotechnology to produce sugarcane, and the resulting bagasse, with a modified cell wall. Reducing or modifying the lignin content in the cell wall of bagasse can reduce production costs and increase yields of bioethanol. This makes bioethanol more economically competitive with oil as an alternative energy source. A move to using bioethanol over fossil based transport fuels will have global economic and environmental benefits.
Resumo:
Termites have colonized many habitats and are among the most abundant animals in tropical ecosystems, which they modify considerably through their actions. The timing of their rise in abundance and of the dispersal events that gave rise to modern termite lineages is not well understood. To shed light on termite origins and diversification, we sequenced the mitochondrial genome of 48 termite species and combined them with 18 previously sequenced termite mitochondrial genomes for phylogenetic and molecular clock analyses using multiple fossil calibrations. The 66 genomes represent most major clades of termites. Unlike previous phylogenetic studies based on fewer molecular data, our phylogenetic tree is fully resolved for the lower termites. The phylogenetic positions of Macrotermitinae and Apicotermitinae are also resolved as the basal groups in the higher termites, but in the crown termitid groups, including Termitinae + Syntermitinae + Nasutitermitinae + Cubitermitinae, the position of some nodes remains uncertain. Our molecular clock tree indicates that the lineages leading to termites and Cryptocercus roaches diverged 170 Ma (153-196 Ma 95% confidence interval [CI]), that modern Termitidae arose 54 Ma (46-66 Ma 95% CI), and that the crown termitid group arose 40 Ma (35-49 Ma 95% CI). This indicates that the distribution of basal termite clades was influenced by the final stages of the breakup of Pangaea. Our inference of ancestral geographic ranges shows that the Termitidae, which includes more than 75% of extant termite species, most likely originated in Africa or Asia, and acquired their pantropical distribution after a series of dispersal and subsequent diversification events.
Resumo:
The origin of terrestrial tetrapods was a key event in vertebrate evolution, yet how and when it occurred remains obscure, due to scarce fossil evidence. Here, we show that the study of palaeopathologies, such as broken and healed bones, can help elucidate poorly understood behavioural transitions such as this. Using high-resolution finite element analysis, we demonstrate that the oldest known broken tetrapod bone, a radius of the primitive stem tetrapod Ossinodus pueri from the mid-Viséan (333 million years ago) of Australia, fractured under a high-force, impact-type loading scenario. The nature of the fracture suggests that it most plausibly occurred during a fall on land. Augmenting this are new osteological observations, including a preferred directionality to the trabecular architecture of cancellous bone. Together, these results suggest that Ossinodus, one of the first large (>2m length) tetrapods, spent a significant proportion of its life on land. Our findings have important implications for understanding the temporal, biogeographical and physiological contexts under which terrestriality in vertebrates evolved. They push the date for the origin of terrestrial tetrapods further back into the Carboniferous by at least two million years. Moreover, they raise the possibility that terrestriality in vertebrates first evolved in large tetrapods in Gondwana rather than in small European forms, warranting a re-evaluation of this important evolutionary event.
Resumo:
Different human activities like combustion of fossil fuels, biomass burning, industrial and agricultural activities, emit a large amount of particulates into the atmosphere. As a consequence, the air we inhale contains significant amount of suspended particles, including organic and inorganic solids and liquids, as well as various microorganism, which are solely responsible for a number of pulmonary diseases. Developing a numerical model for transport and deposition of foreign particles in realistic lung geometry is very challenging due to the complex geometrical structure of the human lung. In this study, we have numerically investigated the airborne particle transport and its deposition in human lung surface. In order to obtain the appropriate results of particle transport and deposition in human lung, we have generated realistic lung geometry from the CT scan obtained from a local hospital. For a more accurate approach, we have also created a mucus layer inside the geometry, adjacent to the lung surface and added all apposite mucus layer properties to the wall surface. The Lagrangian particle tracking technique is employed by using ANSYS FLUENT solver to simulate the steady-state inspiratory flow. Various injection techniques have been introduced to release the foreign particles through the inlet of the geometry. In order to investigate the effects of particle size on deposition, numerical calculations are carried out for different sizes of particles ranging from 1 micron to 10 micron. The numerical results show that particle deposition pattern is completely dependent on its initial position and in case of realistic geometry; most of the particles are deposited on the rough wall surface of the lung geometry instead of carinal region.