451 resultados para MINERAL-CHEMISTRY


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research is to determine the molecular structure of the mineral leogangite. The formation of the types of arsenosulphate minerals offers a mechanism for arsenate removal from soils and mine dumps. Raman and infrared spectroscopy have been used to characterise the mineral. Observed bands are assigned to the stretching and bending vibrations of (SO4)2- and (AsO4)3- units, stretching and bending vibrations of hydrogen bonded (OH)- ions and Cu2+-(O,OH) units. The approximate range of O-H...O hydrogen bond lengths is inferred from the Raman spectra. Raman spectra of leogangite from different origins differ in that some spectra are more complex, where bands are sharp and the degenerate bands of (SO4)2- and (AsO4)3- are split and more intense. Lower wavenumbers of  H2O bending vibration in the spectrum may indicate the presence of weaker hydrogen bonds compared with those in a different leogangite samples. The formation of leogangite offers a mechanism for the removal of arsenic from the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aspects of the molecular structure of the mineral dorfmanite Na2(PO3OH)•2H2O were determined by Raman spectroscopy. The mineral originated from the Kedykverpakhk Mt., Lovozero, Kola Peninsula, Russia. Raman bands are assigned to the hydrogen phosphate units. The intense Raman band at 949 cm-1 and the less intense band at 866 cm-1 are assigned to the PO3 and POH stretching vibrations. Bands at 991, 1066 and 1141 cm-1 are assigned to the ν3 antisymmetric stretching modes. Raman bands at 393, 413 and 448 cm-1 and 514, 541 and 570 cm-1 are attributed to the ν2 and ν4 bending modes of the HPO4 units, respectively. Raman bands at 3373, 3443 and 3492 cm-1 are assigned to water stretching vibrations. POH stretching vibrations are identified by bands at 2904, 3080 and 3134 cm-1. Raman spectroscopy has proven very useful for the study of the structure of the mineral dorfmanite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mixed anion mineral parnauite Cu9[(OH)10|SO4|(AsO4)2].7H2O from two localities namely Cap Garonne Mine, Le Pradet, France and Majuba Hill mine, Pershing County, Nevada, USA has been studied by Raman spectroscopy. The Raman spectrum of the French sample is dominated by an intense band at 975 cm-1 assigned to the ν1 (SO4)2- symmetric stretching mode and Raman bands at 1077 and 1097 cm-1 may be attributed to the ν3 (SO4)2- antisymmetric stretching mode. Two Raman bands 1107 and 1126 cm-1 are assigned to carbonate CO32- symmetric stretching bands and confirms the presence of carbonate in the structure of parnauite. The comparatively sharp band for the Pershing County mineral at 976 cm-1 is assigned to the ν1 (SO4)2- symmetric stretching mode and a broad spectral profile centered upon 1097 cm-1 is attributed to the ν3 (SO4)2- antisymmetric stretching mode. Two intense bands for the Pershing County mineral at 851 and 810 cm-1 are assigned to the ν1 (AsO4)3- symmetric stretching and ν3 (AsO4)3- antisymmetric stretching modes. Two Raman bands for the French mineral observed at 725 and 777 cm-1 are attributed to the ν3 (AsO4)3- antisymmetric stretching mode. For the French mineral, a low intensity Raman band is observed at 869 cm-1 and is assigned to the ν1 (AsO4)3- symmetric stretching vibration. Chemical composition of parnauite remains open and the question may be raised is parnauite a solid solution of two or more minerals such as a copper hydroxy-arsenate and a copper hydroxy sulphate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sarmientite is an environmental mineral; its formation in soils enables the entrapment and immobilisation of arsenic. The mineral sarmientite is often amorphous making the application of X-ray diffraction difficult. Vibrational spectroscopy has been applied to the study of sarmientite. Bands are attributed to the vibrational units of arsenate, sulphate, hydroxyl and water. Raman bands at 794, 814 and 831 cm−1 are assigned to the ν3 (AsO4)3− antisymmetric stretching modes and the ν1 symmetric stretching mode is observed at 891 cm−1. Raman bands at 1003 and 1106 cm−1 are attributed to vibrations. The Raman band at 484 cm−1 is assigned to the triply degenerate (AsO4)3− bending vibration. The high intensity Raman band observed at 355 cm−1 (both lower and upper) is considered to be due to the (AsO4)3−ν2 bending vibration. Bands attributed to water and OH stretching vibrations are observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some minerals are colloidal and are poorly diffracting . Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of minerals. Among this group of minerals is zykaite with formula Fe4(AsO4)(SO4)(OH)•15H2O. The objective of this research is to determine the molecular structure of the mineral zykaite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43-, SO42- and water stretching vibrations. The sharp band at 3515 cm-1 is assigned to the stretching vibration of the OH units. This mineral offers a mechanism for the formation of more crystalline minerals such as scorodite and bukovskyite. Arsenate ions can be removed from aqueous systems through the addition of ferric compounds such as ferric chloride. This results in the formation of minerals such as zykaite and pitticite (Fe3+,AsO4,SO4,H2O).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineral arsentsumebite Pb2Cu(AsO4)(SO4)(OH), a copper arsenate-sulfate hydroxide of the brackebuschite group has been characterised by Raman spectroscopy. The brackebuschite mineral group are a series of monoclinic arsenates, phosphates and vanadates of the general formula A2B(XO4)(OH,H2O), where A may be Ba, Ca, Pb, Sr, while B may be Al, Cu2+,Fe2+, Fe3+, Mn2+, Mn3+, Zn and XO4 may be AsO4, PO4, SO4,VO4. Bands are assigned to the stretching and bending modes of SO42- AsO43- and HOAsO3 units. Raman spectroscopy readily distinguishes between the two minerals arsentsumebite and tsumebite. Raman bands attributed to arsenate are not observed in the Raman spectrum of tsumebite. Phosphate bands found in the Raman spectrum of tsumebite are not found in the Raman spectrum of arsentsumebite. Raman spectroscopy readily distinguishes the two minerals tsumebite and arsentsumebite.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some minerals are formed which show poorly defined X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of the oxyanions in such minerals. Among this group of minerals is mallestigite with formula Pb3Sb5+(SO4)(AsO4)(OH)6•3H2O. The objective of this research is to determine the molecular structure of the mineral mallestigite using vibrational spectroscopy. Raman and infrared bands are attributed to the AsO43- , SO42- and water stretching vibrations. Mallestigite is a mineral formed in ancient waste dumps such as occurs at Mallestiger, Carinthia, Austria and as such is a mineral of archaeological significance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to mimic the chemical reactions in cave systems, the analogue of the mineral stercorite H(NH4)Na(PO4)•4H2O has been synthesised. X-ray diffraction of the stercorite analogue matches the stercorite reference pattern. A comparison is made with the vibrational spectra of synthetic stercorite analogue and the natural Cave mineral. The mineral in nature is formed by the reaction of bat guano chemicals on calcite substrates. A single Raman band at 920 cm-1 (Cave) and 922 cm-1 (synthesised) defines the presence of hydrogen phosphate in the mineral. In the synthetic stercorite analogue, additional bands are observed and are attributed to the dihydrogen and phosphate anions. The vibrational spectra of synthetic stercorite only partly match that of the natural stercorite. It is suggested that natural stercorite is more pure than that of synthesised stercorite. Antisymmetric stretching bands are observed in the infrared spectrum at 1052, 1097, 1135 and 1173 cm-1. Raman spectroscopy shows the stercorite mineral is based upon the hydrogen phosphate anion and not the phosphate anion. Raman and infrared bands are found and assigned to PO43-, H2O, OH and NH stretching vibrations. Raman spectroscopy shows the synthetic analogue is similar to the natural mineral. A mechanism for the formation of stercorite is provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this research is to determine the molecular structure of the mineral hidalgoite PbAl3(AsO4)(SO4)(OH)6 using vibrational spectroscopy. The mineral is found in old mine sites. Observed bands are assigned to the stretching and bending vibrations of (SO4)2- and (AsO4)3- units, stretching and bending vibrations of hydrogen bonded (OH)- ions and Al3+-(O,OH) units. The approximate range of O-H...O hydrogen bond lengths is inferred from the Raman and infrared spectra. Values of 2.6989 Å, 2.7682 Å, 2.8659 Å were obtained. The formation of hidalgoite may offer a mechanism for the removal of arsenic from the environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some minerals are colloidal and show no X-ray diffraction patterns. Vibrational spectroscopy offers one of the few methods for the assessment of the structure of these types of mineral. Among this group of minerals is pitticite simply described as Fe, AsO4, SO4, H2O. The objective of this research is to determine the molecular structure of the mineral pitticite using vibrational spectroscopy. Raman microscopy offers a useful method for the analysis of such colloidal minerals. Raman and infrared bands are attributed to the , and water stretching vibrations. The Raman spectrum is dominated by a very intense sharp band at 983 cm−1 assigned to the symmetric stretching mode. A strong Raman band at 1041 cm−1 is observed and is assigned to the antisymmetric stretching mode. Low intensity Raman bands at 757 and 808 cm−1 may be assigned to the antisymmetric and symmetric stretching modes. Raman bands observed at 432 and 465 cm−1 are attributable to the doubly degenerate ν2(SO4)2- bending mode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineral schlossmacherite (H3O,Ca)Al3(AsO4,PO4,SO4)2(OH)6 , a multi-cation-multi-anion mineral of the beudantite mineral subgroup has been characterised by Raman spectroscopy. The mineral and related minerals functions as a heavy metal collector and is often amorphous or poorly crystalline, such that XRD identification is difficult. The Raman spectra are dominated by an intense band at 864 cm-1, assigned to the symmetric stretching mode of the AsO43- anion. Raman bands at 809 and 819 cm-1 are assigned to the antisymmetric stretching mode of AsO43- . The sulphate anion is characterised by bands at 1000 cm-1 (ν1), and at 1031, 1082 and 1139 cm-1 (ν3). Two sets of bands in the OH stretching region are observed: firstly between 2800 and 3000 cm-1 with bands observed at 2850, 2868, 2918 cm-1 and secondly between 3300 and 3600 with bands observed at 3363, 3382, 3410, 3449 and 3537 cm-1. These bands enabled the calculation of hydrogen bond distances and show a wide range of H-bond distances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Shattuckite Cu5(SiO3)4(OH)2 is a copper hydroxy silicate and is commonly known as a ‘healing’ mineral. Three shattuckite mineral samples from three different origins were analysed by Raman spectroscopy. Some Raman bands are common in the spectra of the minerals. Raman bands at around 890, 1058 and 1102 are described as the ν3 –SiO3 antisymmetric stretching vibrations. The Raman band at 670 cm-1 is assigned to the ν4 bending modes of the -SiO3 units and the band at around 785 cm-1is due to Si-O-Si chain stretching mode. Raman (and infrared) spectroscopy proves that water is in the molecular structure of shattuckite; thus the formula is better written as Cu5(SiO3)4(OH)2•xH2O.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kinoite Ca2Cu2Si3O10(OH)4 is a mineral named after a Jesuit missionary. Raman and infrared spectroscopy have been used to characterise the structure of the mineral. The Raman spectrum is characterised by an intense sharp band at 847 cm-1 assigned to the ν1 (A1g) symmetric stretching vibration. Intense sharp bands at 951, 994 and 1000 cm-1 are assigned to the ν3 (Eu, A2u, B1g) SiO4 antisymmetric stretching vibrations. Multiple ν2 SiO4 vibrational modes indicate strong distortion of the SiO4 tetrahedra. Multiple CaO and CuO stretching bands are observed. Raman spectroscopy confirmed by infrared spectroscopy clearly shows that hydroxyl units are involved in the kinoite structure. Based upon the infrared spectra, it is proposed that water is also involved in the kinoite structure. Based upon vibrational spectroscopy, the formula of kinoite is defined as Ca2Cu2Si3O10(OH)4•xH2O.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermogravimetry combined with evolved gas mass spectrometry has been used to characterise the mineral ardealite and to ascertain the thermal stability of this ‘cave’ mineral. The mineral ardealite Ca2(HPO4)(SO4)•4H2O is formed through the reaction of calcite with bat guano. The mineral shows disorder and the composition varies depending on the origin of the mineral. Thermal analysis shows that the mineral starts to decompose over the temperature range 100 to 150°C with some loss of water. The critical temperature for water loss is around 215°C and above this temperature the mineral structure is altered. It is concluded that the mineral starts to decompose at 125°C, with all waters of hydration being lost after 226°C. Some loss of sulphate occurs over a broad temperature range centred upon 565°C. The final decomposition temperature is 823°C with loss of the sulphate and phosphate anions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mineral newberyite Mg(PO3OH)•3H2O is a mineral that has been found in caves such as the Skipton Lava Tubes (SW of Ballarat, Victoria, Australia), Moorba cave, Jurien Bay, Western Australia, and in the Petrogale Cave (Madura , Eucla, Western Australia). Because these minerals contain water, the minerals lend themselves to thermal analysis. The mineral newberyite is found to decompose at 145°C with a water loss of 31.96%, a result which is very close to the theoretical value. The result shows that the mineral is not stable in caves where the temperature exceeds this value. The implication of this result rests with the removal of kidney stones, which have the same composition as newberyite. Point heating focussing on the kidney stone results in the destruction of the kidney stone.