131 resultados para MEDIAL AMYGDALA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pavlovian fear conditioning, also known as classical fear conditioning is an important model in the study of the neurobiology of normal and pathological fear. Progress in the neurobiology of Pavlovian fear also enhances our understanding of disorders such as posttraumatic stress disorder (PTSD) and with developing effective treatment strategies. Here we describe how Pavlovian fear conditioning is a key tool for understanding both the neurobiology of fear and the mechanisms underlying variations in fear memory strength observed across different phenotypes. First we discuss how Pavlovian fear models aspects of PTSD. Second, we describe the neural circuits of Pavlovian fear and the molecular mechanisms within these circuits that regulate fear memory. Finally, we show how fear memory strength is heritable; and describe genes which are specifically linked to both changes in Pavlovian fear behavior and to its underlying neural circuitry. These emerging data begin to define the essential genes, cells and circuits that contribute to normal and pathological fear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the brain, membrane associated nongenomic steroid receptors can induce fast-acting responses to ion conductance and second messenger systems of neurons. Emerging data suggest that membrane associated glucocorticoid and mineralocorticoid receptors may directly regulate synaptic excitability during times of stress when adrenal hormones are elevated. As the key neuron signaling interface, the synapse is involved in learning and memory, including traumatic memories during times of stress. The lateral amygdala is a key site for synaptic plasticity underlying conditioned fear, which can both trigger and be coincident with the stress response. A large body of electrophysiological data shows rapid regulation of neuronal excitability by steroid hormone receptors. Despite the importance of these receptors, to date, only the glucocorticoid receptor has been anatomically localized to the membrane. We investigated the subcellular sites of mineralocorticoid receptors in the lateral amygdala of the Sprague-Dawley rat. Immunoblot analysis revealed the presence of mineralocorticoid receptors in the amygdala. Using electron microscopy, we found mineralocorticoid receptors expressed at both nuclear including: glutamatergic and GABAergic neurons and extra nuclear sites including: presynaptic terminals, neuronal dendrites, and dendritic spines. Importantly we also observed mineralocorticoid receptors at postsynaptic membrane densities of excitatory synapses. These data provide direct anatomical evidence supporting the concept that, at some synapses, synaptic transmission is regulated by mineralocorticoid receptors. Thus part of the stress signaling response in the brain is a direct modulation of the synapse itself by adrenal steroids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Organ motion as a result of respiration is an important field of research for medical physics. Knowledge of magnitude and direction of this motion is necessary to allow for more accurate radiotherapy treatment planning. This will result in higher doses to the tumour whilst sparing healthy tissue. This project involved human trials, where the radiation therapy patient's kidneys were CT scanned under three different conditions; whilst free breathing (FB), breath-hold at normal tidal inspiration (BHIN), and breath-hold at normal tidal expiration (BHEX). The magnitude of motion was measured by recording the outline of the kidney from a Beam's Eye View (BEV). The centre of mass of this 2D shape was calculated for each set using "ImageJ" software and the magnitude of movement determined from the change in the centroid's coordinates between the BHIN and BHEX scans. The movement ranged from, for the left and right kidneys, 4-46mm and 2-44mm in the superior/inferior (axial) plane, 1-21mm and 2- 16mm in the anterior/posterior (coronal) plane, and 0-6mm and 0-8mm in the lateral/medial (sagittal) plane. From exhale to inhale, the kidneys tended to move inferiorly, anteriorly and laterally. A standard radiotherapy plan, designed to treat the para-aortics with opposed lateral fields was performed on the free breathing (planning) CT set. The field size and arrangement was set up using the same parameters for each subject. The prescription was to deliver 45 Gray in 25 fractions. This field arrangement and prescription was then copied over to the breath hold CT sets, and the dosimetric differences were compared using Dose Volume Histograms (DVH). The point of comparison for the three sets was recorded as the percentage volume of kidney receiving less than or equal to 10 Gray. The QUASAR respiratory motion phantom was used with the range of motion determined from the human study. The phantom was imaged, planned and treated with a linear accelerator with dose determined by film. The effect of the motion was measured by the change in the penumbra of the film and compared to the penumbra from the treatment planning system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Hallux valgus (HV) has been linked to functional disability and increased falls risk in older adults. However, specific gait alterations in individuals with HV are unclear. This systematic review investigated gait parameters associated with HV in otherwise healthy adults. Methods Electronic databases (Medline, Embase, CINAHL) were searched to October 2011, including cross-sectional studies with clearly defined HV and non-HV comparison groups. Two investigators independently rated studies for methodological quality. Effect sizes (95% confidence intervals (CI)) were calculated as standardized mean differences (SMD) for continuous data and risk ratios (RR) for dichotomous data. Results Nine studies included a total of 589 participants. Three plantar pressure studies reported increased hallux loading (SMD 0.56 to 1.78) and medial forefoot loading (SMD 0.62 to 1.21), while one study found reduced first metatarsal loading (SMD −0.61, CI −1.19 to −0.03) in HV participants. HV participants demonstrated less ankle and rearfoot motion during terminal stance (SMD −0.81 to −0.63) and increased intrinsic muscle activity (RR 1.6, 1.1 to 2.2). Most studies reported no differences in spatio-temporal parameters; however, one study found reduced speed (SMD −0.73, -1.25 to −0.20), step length (SMD −0.66 to −0.59) and less stable gait patterns (SMD −0.86 to −0.78) in older adults with HV. Conclusions HV impacts on particular gait parameters, and further understanding of potentially modifiable factors is important for prevention and management of HV. Cause and effect relationships cannot be inferred from cross-sectional studies, thus prospective studies are warranted to elucidate the relationship between HV and functional disability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to determine whether declines in knee flexor strength following overground repeat sprints were related to changes in hamstrings myoelectrical activity. Seventeen recreationally active males completed maximal isokinetic concentric and eccentric knee flexor strength assessments at 1800.s-1 before and after repeat sprint running. Myoelectrical activity of the biceps femoris (BF) and medial hamstrings (MH) was measured during all isokinetic contractions. Repeated measures mixed model (Fixed factors = time [pre- and post- repeat sprint] and leg [dominant and non-dominant], random factor = participants) design was fitted with the restricted maximal likelihood method. Repeat sprint running resulted in significant declines in eccentric, and concentric, knee flexor strength (eccentric = 25 ± 34 Nm, 15% p<0.001; concentric 11 Nm± 22 Nm, 10% p = 0.001). Eccentric BF myoelectrical activity was significantly reduced (10%; p= 0.033). Concentric BF and all MH myoelectrical activity were not altered. The declines in maximal eccentric torque were associated with the change in eccentric biceps femoris myoelectrical activity (p = 0.013). Following repeat sprint running there were preferential declines in the myoelectrical activity of the BF, which explained declines in eccentric knee flexor strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Degradation of the somatosensory system has been implicated in postural instability and increased falls risk for older people and Parkinson’s disease (PD) patients. Here we demonstrate that textured insoles provide a passive intervention that is an inexpensive and accessible means to enhance the somatosensory input from the plantar surface of the feet. Methods 20 healthy older adults (controls) and 20 participants with PD were recruited for the study. We evaluated effects of manipulating somatosensory information from the plantar surface of the feet using textured insoles. Participants performed standing tests, on two different surfaces (firm and foam), under three footwear conditions: 1) barefoot; 2) smooth insoles; and 3) textured insoles. Standing balance was evaluated using a force plate yielding data on the range of anterior-posterior and medial-lateral sway, as well as standard deviations for anterior-posterior and medial-lateral sway. Results On the firm surface with eyes open both the smooth and textured insoles reduced medial-lateral sway in the PD group to a similar level as the controls. Only the textured insole decreased medial-lateral sway and medial-lateral sway standard deviation in the PD group on both surfaces, with and without visual input. Greatest benefits were observed in the PD group while wearing the textured insoles, and when standing on the foam surface with eyes closed. Conclusions Data suggested that textured insoles may provide a low-cost means of improving postural stability in high falls-risk groups, such as people with PD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The relationship between coronal knee laxity and the restraining properties of the collateral ligaments remains unknown. This study investigated correlations between the structural properties of the collateral ligaments and stress angles used in computer-assisted total knee arthroplasty (TKA), measured with an optically based navigation system. Ten fresh-frozen cadaveric knees (mean age: 81 ± 11 years) were dissected to leave the menisci, cruciate ligaments, posterior joint capsule and collateral ligaments. The resected femur and tibia were rigidly secured within a test system which permitted kinematic registration of the knee using a commercially available image-free navigation system. Frontal plane knee alignment and varus-valgus stress angles were acquired. The force applied during varus-valgus testing was quantified. Medial and lateral bone-collateral ligament-bone specimens were then prepared, mounted within a uni-axial materials testing machine, and extended to failure. Force and displacement data were used to calculate the principal structural properties of the ligaments. The mean varus laxity was 4 ± 1° and the mean valgus laxity was 4 ± 2°. The corresponding mean manual force applied was 10 ± 3 N and 11 ± 4 N, respectively. While measures of knee laxity were independent of the ultimate tensile strength and stiffness of the collateral ligaments, there was a significant correlation between the force applied during stress testing and the instantaneous stiffness of the medial (r = 0.91, p = 0.001) and lateral (r = 0.68, p = 0.04) collateral ligaments. These findings suggest that clinicians may perceive a rate of change of ligament stiffness as the end-point during assessment of collateral knee laxity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Impaction bone grafting for reconstitution of bone stock in revision hip surgery has been used for nearly 30 years. We used this technique, in combination with a cemented acetabular component, in the acetabula of 304 hips in 292 patients revised for aseptic loosening between 1995 and 2001. The only additional supports used were stainless steel meshes placed against the medial wall or laterally around the acetabular rim to contain the graft. All Paprosky grades of defect were included. Clinical and radiographic outcomes were collected in surviving patients at a minimum of 10 years following the index operation. Mean follow-up was 12.4 years (SD 1.5; range 10.0-16.0). Kaplan-Meier survivorship with revision for aseptic loosening as the endpoint was 85.9% (95% CI 81.0 to 90.8%) at 13.5 years. Clinical scores for pain relief remained satisfactory, and there was no difference in clinical scores between cups that appeared stable and those that appeared loose radiographically.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synapses onto dendritic spines in the lateral amygdala formed by afferents from the auditory thalamus represent a site of plasticity in Pavlovian fear conditioning. Previous work has demonstrated that thalamic afferents synapse onto LA spines expressing glutamate receptor (GluR) subunits, but the GluR subunit distribution at the synapse and within the cytoplasm has not been characterized. Therefore, we performed a quantitative analysis for α-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptor subunits GluR2 and GluR3 and N-methyl-D-aspartate (NMDA) receptor subunits NR1 and NR2B by combining anterograde labeling of thalamo-amygdaloid afferents with postembedding immunoelectron microscopy for the GluRs in adult rats. A high percentage of thalamo- amygdaloid spines was immunoreactive for GluR2 (80%), GluR3 (83%), and NR1 (83%), while a smaller proportion of spines expressed NR2B (59%). To compare across the various subunits, the cytoplasmic to synaptic ratios of GluRs were measured within thalamo-amygdaloid spines. Analyses revealed that the cytoplasmic pool of GluR2 receptors was twice as large compared to the GluR3, NR1, and NR2B subunits. Our data also show that in the adult brain, the NR2B subunit is expressed in the majority of in thalamo-amygdaloid spines and that within these spines, the various GluRs are differentially distributed between synaptic and non-synaptic sites. The prevalence of the NR2B subunit in thalamo-amygdaloid spines provides morphological evidence supporting its role in the fear conditioning circuit while the differential distribution of the GluR subtypes may reflect distinct roles for their involvement in this circuitry and synaptic plasticity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of memory in most behavioral paradigms, including emotional memory paradigms, has focused on the feed forward components that underlie Hebb’s first postulate, associative synaptic plasticity. Hebb’s second postulate argues that activated ensembles of neurons reverberate in order to provide temporal coordination of different neural signals, and thereby facilitate coincidence detection. Recent evidence from our groups has suggested that the lateral amygdala (LA) contains recurrent microcircuits and that these may reverberate. Additionally this reverberant activity is precisely timed with latencies that would facilitate coincidence detection between cortical and sub cortical afferents to the LA.Thus, recent data at the microcircuit level in the amygdala provide some physiological evidence in support of the second Hebbian postulate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bed nucleus of the stria terminalis (BNST) is believed to be a critical relay between the central nucleus of the amygdala (CE) and the paraventricular nucleus of the hypothalamus in the control of hypothalamic–pituitary– adrenal (HPA) responses elicited by conditioned fear stimuli. If correct, lesions of CE or BNST should block expression of HPA responses elicited by either a specific conditioned fear cue or a conditioned context. To test this, rats were subjected to cued (tone) or contextual classical fear conditioning. Two days later, electrolytic or sham lesions were placed in CE or BNST. After 5 days, the rats were tested for both behavioral (freezing) and neuroendocrine (corticosterone) responses to tone or contextual cues. CE lesions attenuated conditioned freezing and corticosterone responses to both tone and con- text. In contrast, BNST lesions attenuated these responses to contextual but not tone stimuli. These results suggest CE is indeed an essential output of the amygdala for the expres- sion of conditioned fear responses, including HPA re- sponses, regardless of the nature of the conditioned stimu- lus. However, because lesions of BNST only affected behav- ioral and endocrine responses to contextual stimuli, the results do not support the notion that BNST is critical for HPA responses elicited by conditioned fear stimuli in general. Instead, the BNST may be essential specifically for contex- tual conditioned fear responses, including both behavioral and HPA responses, by virtue of its connections with the hippocampus, a structure essential to contextual condition- ing. The results are also not consistent with the hypothesis that BNST is only involved in unconditioned aspects of fear and anxiety.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dietary fatty acids are known to influence the phospholipid composition of many tissues in the body, with lipid turnover occurring rapidly. The aim of this study was to investigate whether changes in the fatty acid composition of the diet can affect the phospholipid composition of the lens. Male Sprague-Dawley rats were fed three diets with distinct profiles in both essential and non-essential fatty acids. After 8 weeks, lenses and skeletal muscle were removed, and the lenses sectioned into nuclear and cortical regions. In these experiments, the lens cortex was synthesised during the course of the variable lipid diet. Phospholipids were then identified by electrospray ionisation tandem mass spectrometry, and quantified via the use of internal standards. The phospholipid compositions of the nuclear and cortical regions of the lens differed slightly between the two regions, but comparison of the equivalent regions across the diet groups showed remarkable similarity. In contrast, the phospholipid composition of skeletal muscle (medial gastrocnemius) in these rats varied significantly. This study provides the first direct evidence to show that the phospholipid composition of the lens is tightly regulated and thus appears to be independent of diet. As phospholipids determine membrane fluidity and influence the activity and function of integral membrane proteins, regulation of their composition may be important for the function of the lens. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been shown that abilities in spatial learning and memory are adversely affected by aging. The present study was conducted to investigate whether increasing age has equal consequences for all types of spatial learning or impacts certain types of spatial learning selectively. Specifically, two major types of spatial learning, exploratory navigation and map reading, were contrasted. By combining a neuroimaging finding that the medial temporal lobe (MTL) is especially important for exploratory navigation and a neurological finding that the MTL is susceptible to age-related atrophy, it was hypothesized that spatial learning through exploratory navigation would exhibit a greater decline in later life than spatial learning through map reading. In an experiment, young and senior participants learned locations of landmarks in virtual environments either by navigating in them in the first-person perspective or by seeing aerial views of the environments. Results showed that senior participants acquired less accurate memories of the layouts of landmarks than young participants when they navigated in the environments, but the two groups did not differ in spatial learning performance when they viewed the environments from the aerial perspective. These results suggest that spatial learning through exploratory navigation is particularly vulnerable to adverse effects of aging, whereas elderly adults may be able to maintain their map reading skills relatively well.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to inhibit unwanted actions is a heritable executive function that may confer risk to disorders such as attention deficit hyperactivity disorder (ADHD). Converging evidence from pharmacology and cognitive neuroscience suggests that response inhibition is instantiated within frontostriatal circuits of the brain with patterns of activity that are modulated by the catecholamines dopamine and noradrenaline. A total of 405 healthy adult participants performed the stop-signal task, a paradigmatic measure of response inhibition that yields an index of the latency of inhibition, termed the stop-signal reaction time (SSRT). Using this phenotype, we tested for genetic association, performing high-density single-nucleotide polymorphism mapping across the full range of autosomal catecholamine genes. Fifty participants also underwent functional magnetic resonance imaging to establish the impact of associated alleles on brain and behaviour. Allelic variation in polymorphisms of the dopamine transporter gene (SLC6A3: rs37020; rs460000) predicted individual differences in SSRT, after corrections for multiple comparisons. Furthermore, activity in frontal regions (anterior frontal, superior frontal and superior medial gyri) and caudate varied additively with the T-allele of rs37020. The influence of genetic variation in SLC6A3 on the development of frontostriatal inhibition networks may represent a key risk mechanism for disorders of behavioural inhibition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper investigates how neuronal activation for naming photographs of objects is influenced by the addition of appropriate colour or sound. Behaviourally, both colour and sound are known to facilitate object recognition from visual form. However, previous functional imaging studies have shown inconsistent effects. For example, the addition of appropriate colour has been shown to reduce antero-medial temporal activation whereas the addition of sound has been shown to increase posterior superior temporal activation. Here we compared the effect of adding colour or sound cues in the same experiment. We found that the addition of either the appropriate colour or sound increased activation for naming photographs of objects in bilateral occipital regions and the right anterior fusiform. Moreover, the addition of colour reduced left antero-medial temporal activation but this effect was not observed for the addition of object sound. We propose that activation in bilateral occipital and right fusiform areas precedes the integration of visual form with either its colour or associated sound. In contrast, left antero-medial temporal activation is reduced because object recognition is facilitated after colour and form have been integrated.