95 resultados para Lyons
Resumo:
The major histocompatibility complex (MHC) on chromosome 6 is associated with susceptibility to more common diseases than any other region of the human genome, including almost all disorders classified as autoimmune. In type 1 diabetes the major genetic susceptibility determinants have been mapped to the MHC class II genes HLA-DQB1 and HLA-DRB1 (refs 1–3), but these genes cannot completely explain the association between type 1 diabetes and the MHC region4, 5, 6, 7, 8, 9, 10, 11. Owing to the region's extreme gene density, the multiplicity of disease-associated alleles, strong associations between alleles, limited genotyping capability, and inadequate statistical approaches and sample sizes, which, and how many, loci within the MHC determine susceptibility remains unclear. Here, in several large type 1 diabetes data sets, we analyse a combined total of 1,729 polymorphisms, and apply statistical methods—recursive partitioning and regression...
Resumo:
Background The Global Burden of Disease Study 2013 (GBD 2013) aims to bring together all available epidemiological data using a coherent measurement framework, standardised estimation methods, and transparent data sources to enable comparisons of health loss over time and across causes, age–sex groups, and countries. The GBD can be used to generate summary measures such as disability-adjusted life-years (DALYs) and healthy life expectancy (HALE) that make possible comparative assessments of broad epidemiological patterns across countries and time. These summary measures can also be used to quantify the component of variation in epidemiology that is related to sociodemographic development. Methods We used the published GBD 2013 data for age-specific mortality, years of life lost due to premature mortality (YLLs), and years lived with disability (YLDs) to calculate DALYs and HALE for 1990, 1995, 2000, 2005, 2010, and 2013 for 188 countries. We calculated HALE using the Sullivan method; 95% uncertainty intervals (UIs) represent uncertainty in age-specific death rates and YLDs per person for each country, age, sex, and year. We estimated DALYs for 306 causes for each country as the sum of YLLs and YLDs; 95% UIs represent uncertainty in YLL and YLD rates. We quantified patterns of the epidemiological transition with a composite indicator of sociodemographic status, which we constructed from income per person, average years of schooling after age 15 years, and the total fertility rate and mean age of the population. We applied hierarchical regression to DALY rates by cause across countries to decompose variance related to the sociodemographic status variable, country, and time. Findings Worldwide, from 1990 to 2013, life expectancy at birth rose by 6·2 years (95% UI 5·6–6·6), from 65·3 years (65·0–65·6) in 1990 to 71·5 years (71·0–71·9) in 2013, HALE at birth rose by 5·4 years (4·9–5·8), from 56·9 years (54·5–59·1) to 62·3 years (59·7–64·8), total DALYs fell by 3·6% (0·3–7·4), and age-standardised DALY rates per 100 000 people fell by 26·7% (24·6–29·1). For communicable, maternal, neonatal, and nutritional disorders, global DALY numbers, crude rates, and age-standardised rates have all declined between 1990 and 2013, whereas for non–communicable diseases, global DALYs have been increasing, DALY rates have remained nearly constant, and age-standardised DALY rates declined during the same period. From 2005 to 2013, the number of DALYs increased for most specific non-communicable diseases, including cardiovascular diseases and neoplasms, in addition to dengue, food-borne trematodes, and leishmaniasis; DALYs decreased for nearly all other causes. By 2013, the five leading causes of DALYs were ischaemic heart disease, lower respiratory infections, cerebrovascular disease, low back and neck pain, and road injuries. Sociodemographic status explained more than 50% of the variance between countries and over time for diarrhoea, lower respiratory infections, and other common infectious diseases; maternal disorders; neonatal disorders; nutritional deficiencies; other communicable, maternal, neonatal, and nutritional diseases; musculoskeletal disorders; and other non-communicable diseases. However, sociodemographic status explained less than 10% of the variance in DALY rates for cardiovascular diseases; chronic respiratory diseases; cirrhosis; diabetes, urogenital, blood, and endocrine diseases; unintentional injuries; and self-harm and interpersonal violence. Predictably, increased sociodemographic status was associated with a shift in burden from YLLs to YLDs, driven by declines in YLLs and increases in YLDs from musculoskeletal disorders, neurological disorders, and mental and substance use disorders. In most country-specific estimates, the increase in life expectancy was greater than that in HALE. Leading causes of DALYs are highly variable across countries. Interpretation Global health is improving. Population growth and ageing have driven up numbers of DALYs, but crude rates have remained relatively constant, showing that progress in health does not mean fewer demands on health systems. The notion of an epidemiological transition—in which increasing sociodemographic status brings structured change in disease burden—is useful, but there is tremendous variation in burden of disease that is not associated with sociodemographic status. This further underscores the need for country-specific assessments of DALYs and HALE to appropriately inform health policy decisions and attendant actions.
Resumo:
This submission responds to the document Intellectual Property Arrangements Issues Paper (Issues Paper) released by the Productivity Commission in October 2015 for public consultation and input by 30 November 2015. The API is grateful for the extension of time granted by the Commission to complete and lodge this submission. The overall need for an inquiry into intellectual property is supported by API. In particular it is noted with approval that the Commission states in its Issues Paper that it is to consider the appropriate balance between “incentives for innovation and investments, and the interests of both individuals and businesses in assessing products”.1 However, API is of the view that intellectual property in the area of real property presents a number of issues which are not fully canvassed in the abovementioned Issues Paper. Intellectual property embedded in valuation and other property-related reports of API members involves the acquisition of information which may possibly be confidential. Yet, when engaged in banks and financial institutions the intellectual property in such valuations and/ or reports is commonly required to be passed to the client bank or financial institution. In the Issues Paper it is proposed that there are seven different forms of intellectual property rights.2 It is the view of API that an eight form exists, namely private agreements. The Issues Paper, however, regards private agreements between firms as alternatives to intellectual property rights. The API considers that “secrecy or confidentiality arrangements”3 as identified in the Issues Paper form a much larger part of the manner in which intellectual property is maintained in Australia for the purposes of trade secrecy or more often, financial confidentiality...
Resumo:
NIt is now widely accepted that corporations have a responsibility to benefit society, as well as generate profit. This study used institutional theory to explore how the complex and contested notion of corporate social responsibility is understood and practiced by junior and mid-tier Australian resources companies operating in the world's most impoverished countries. The study found that CSR meaning and practice in this large but little researched group of companies was shaped by complex pressures at the global, industry, organisational and individual levels. Importantly, the study also revealed striking contradictions and ambiguities between participants' CSR aspirations and their actions and accountability.
Resumo:
This paper reviews the remarkably similar experiences of school science reported by high school students in Sweden, England, and Australia. It compares student narratives from interpretive studies by Lindahl, by Osborne and Collins, and by Lyons, identifying core themes relating to critical contemporary issues in science education. These themes revolve around the transmissive pedagogy, decontextualized content, and unnecessary difficulty of school science commonly reported by students in the studies. Their collective experiences are used as a framework for examining student conceptions of, and attitudes to, school science more generally, drawing on an extensive range of international literature. The paper argues that the experiences of students in the three studies provide important insights into the widespread declines in interest and enrolments in high school and university science courses.
Resumo:
This paper reports and discusses the principal findings of an Australian study exploring the decisions of high achieving Year 10 students about taking physics and chemistry courses (Lyons, 2003). The study used a ‘multiple worlds’ framework to explore the diverse background characteristics that previous quantitative research had shown were implicated in these decisions. Based on analyses of questionnaire and interview data, the study found that the students’ decisions involved the complex negotiation of a number of cultural characteristics within their school science and family worlds. Many of the students regarded junior high school science as irrelevant, uninteresting and difficult, leaving them with few intrinsic reasons for enrolling in senior science courses. The study found that decisions about taking physical science courses were associated with the resources of cultural and social capital within their families, and the degree to which these resources were congruent with the advantages of choosing these courses. The paper concludes that the low intrinsic value of school science and the erosion of its strategic value contribute to the reluctance of students to choose physical science courses in the senior school.
Resumo:
It is often assumed that teachers in rural and remote schools are at a disadvantage when it comes to accessing professional development. But is there sufficient evidence to support this assumption? This paper reports findings from two national surveys comparing the professional development priorities of primary and secondary science teachers from metropolitan, provincial and remote schools. The research found that while teachers' unmet needs for some PD opportunities increased significantly with school remoteness, this was not the case for all opportunities. In teasing out the different PD priorities of primary and secondary science teachers, the paper provides evidence to help education authorities and professional organisations address the specific needs of teachers in different locations.
Resumo:
Research on the achievement of rural and remote students in science and mathematics is located within a context of falling levels of participation in physical science and mathematics courses in Australian schools, and underrepresentation of rural students in higher education. International studies such as the Programme of International Student Assessment (PISA), have reported lower levels of mathematical and scientific literacy in Australian students from rural and remote schools (Thomson et al, 2011). The SiMERR national survey of science, mathematics and ICT education in rural and regional Australia (Lyons et al, 2006) identified factors affecting student achievement in rural and remote schools. Many of the issues faced by rural and remote students in their schools are likely to have implications on their university enrolments in science, technology, engineering and mathematics (STEM) courses. For example, rural and remote students are less likely to attend university in general than their city counterparts and higher university attrition rates have been reported for remote students nationally. This paper examines the responses of a sample of rural/remote Australian first year STEM students at Australian universities to two questions. These related to their intentions to complete the course; and whether -and if so, why- they had ever considered withdrawing from their course. Results indicated that rural students who were still in their course by the end of first year were no more or less likely to consider withdrawing than were their peers from more populous centres. However, almost 20% of the rural cohort had considered withdrawing at some stage in their course, and their explanations provide insights into the reasoning of those who may not persist with their courses at university. These results, in the context of the greater attrition rate of remote students from university, point to the need to identify factors that positively impact on rural and remote students’ interest and achievement in science and mathematics. It also highlights a need for future research into the particular issues remote students may face in deciding whether or not to do science at the two key transition points of senior school and university/TAFE studies, and whether or not to persist in their tertiary studies. This paper is positioned at the intersection of two problems in Australian education. The first is a context of falling levels of participation in physical science and mathematics courses in Australian universities. The second is persistent inequitable access to, and retention in, tertiary education for students from rural and remote areas. Despite considerable research attention to both of these areas over recent years these problems have thus far proved to be intractable. This paper therefore aims to briefly review the relevant Australian literature pertaining to these issues; that is, declining STEM enrolments, and the underrepresentation and retention of rural/remote students in higher education. Given the related problems in these two overlapping domains, we then explore the views of first year rural students enrolled in courses, in relation to their intentions of withdrawing (or not) and the associated reasons for their views.
Resumo:
The SiMERR National Survey was one of the first priorities of the National Centre of Science, Information and Communication Technology and Mathematics Education for Rural and Regional Australia (SiMERR Australia), established at the University of New England in July 2004 through a federal government grant. With university based ‘hubs’ in each state and territory, SiMERR Australia aims to support rural and regional teachers, students and communities in improving educational outcomes in these subject areas. The purpose of the survey was to identify the key issues affecting these outcomes. The National Survey makes six substantial contributions to our understanding of issues in rural education. First, it focuses specifically on school science, ICT and mathematics education, rather than on education more generally. Second, it compares the different circumstances and needs of teachers across a nationally agreed geographical framework, and quantifies these differences. Third, it compares the circumstances and needs of teachers in schools with different proportions of Indigenous students. Fourth, it provides greater detail than previous studies on the specific needs of schools and teachers in these subject areas. Fifth, the analyses of teacher ‘needs’ have been controlled for the socio-economic background of school locations, resulting in findings that are more tightly associated with geographic location than with economic circumstances. Finally, most previous reports on rural education in Australia were based upon focus interviews, public submissions or secondary analyses of available data. In contrast, the National Survey has generated a sizable body of original quantitative and qualitative data.
Resumo:
This paper reports and discusses findings from a recent study which explored the science enrolment decisions of high achieving, or ‘science proficient’ secondary level students in Australia (Lyons 2003). The research was prompted by the increasing reluctance of such students to enrol in postcompulsory science courses, particularly in physics and chemistry. The study investigated the influences on students’ deliberations about taking a range of science courses. However, this report confines itself to decisions about enrolling in the physical sciences. The paper summarises the students’ experiences and conceptions of school science, as well as the characteristics of their ‘family worlds’ found to be influential in their decisions1. The paper discusses the important roles of cultural and social capital in these decisions, and concludes that enrolment in physical science courses was associated with congruence between the students’ conceptions of school science, and characteristics of their family backgrounds.
Resumo:
There are several good reasons why Earth and Space Science should be a part of any science curriculum. Nearly everything we do each day is connected in some way to the Earth: to its land, oceans, atmosphere, plants and animals. By 2025, eight billion people will live on Earth. If we are to continue extracting resources to maintain a high quality of life, then it is important that our children are scientifically literate in a way that allows them to exploit the Earth’s resources in a sustainable way. People who understand how earth systems work can make informed decisions and may be able to help resolve issues surrounding clean water, urban planning and development, global climate change and the use and management of natural resources.
Resumo:
Here's a challenge. Try searching Google for the phrase 'rural science teachers' in Australian web content. Surprisingly, my attempts returned only two hits, neither of which actually referred to Australian teachers. Searches for 'rural science education' fare little better. On this evidence one could be forgiven for wondering whether the concept of a rural science teacher actually exists in the Australian consciousness. OK, so Google is not (yet) the arbiter of our conceptions, and to be fair, there aren't many hits for 'urban science teacher' either. The point I'm making is that in Australia we don't tend to conceptualise science teachers or science education as rural or urban. As a profession we are quite mobile, and throughout our careers many of us have worked in both city and country schools. But that's not to say that rural science teaching isn't conceptually or practically different to teaching in the city.
Resumo:
This paper presents findings from the SiMERR National Survey concerning the need priorities of secondary ICT teachers for professional development, resources and student learning experiences. The findings - drawn from a survey of 237 secondary ICT teachers across Australia - provide an opportunity to compare the needs of teachers working in metropolitan, provincial and remote schools. The study found that vacant ICT positions are difficult to fill ond that the novel on dynamic nature of ICT requires teachers to have more extensive opportunities for on-the-job training, collegial collaboration and mentoring than is the case for teachers of more traditional subjects like science and mathematics. The study also found that ICT teachers are commonly required to manage and maintain ICT resources and to assist other staff to use ICT resources, while being allocated insufficient time in which to do these additional activities. The implications of these and other findings are discussed along with recommendations to help address the needs of ICT teachers in different parts of Australia.
Building sustainable education in science, mathematics and technology education in Western Australia