699 resultados para Full life
Resumo:
This is an internal report of the BRITE Project’s activities for 2003. The goal of the Project is to improve the incidence and quality of innovation in the Australian building and construction industry. The primary aim of the year’s work was to complete six case studies of innovation in the Australian building and construction industry. A secondary aim was to prepare for the Project’s innovation survey to be conducted in 2004. The case study program was undertaken to demonstrate the benefits of innovation and show how businesses successfully implement their innovations. The innovation survey is intended to run every 2nd year over the life of the CRC in order to benchmark innovation performance as a tool for public sector policy development and business strategy development. Appendix A contains a list of papers produced by the BRITE Project in 2003. The remainder of this report focuses on the case study program, which was successfully completed during 2003, with six booklets being produced.
Resumo:
In construction, inter-organisational relationships are of the highest importance. Ethical practice and behaviour is a means for improving inter-organisational relationships by providing a clear understanding of the rights and obligations of all parties, improving productivity, affecting long-term business dealings, and influencing quality, time and costs. Therefore, the ability to build sustainable relationships grounded in ethical practice is important to the construction industry. Establishing ethical standards at the beginning of the procurement process provides an ethical platform for the project life cycle and the relationship between procurers and contractors. Therefore it is important to determine what the ethical issues are in the Australian construction industry from members of the industry themselves; including clients. This “bottom up” approach is not a particularly new concept. Ever since the Gyles Royal Commission in 1992 there has been a considerable effort by government agencies to develop policies to improve the ethical behaviour of the industry.
Resumo:
Current software tools for documenting and developing models of buildings focus on supporting a single user who is a specialist in the specific software used within their own discipline. Extensions to these tools for use by teams maintain the single discipline view and focus on version and file management. There is a perceived need in industry to have tools that specifically support collaboration among individuals from multiple disciplines with both a graphical representation of the design and a persistent data model. This project involves the development of a prototype of such a software tool. We have identified multi-user 3D virtual worlds as an appropriate software base for the development of a collaborative design tool. These worlds are inherently multi-user and therefore directly support collaboration through a sense of awareness of others in the virtual world, their location within the world, and provide various channels for direct and indirect communication. Such software platforms also provide a 3D building and modelling environment that can be adapted to the needs of the building and construction industry. DesignWorld is a prototype system for collaborative design developed by augmenting the Second Life (SL) commercial software platform1 with a collection web-based tools for communication and design. Agents manage communication between the 3D virtual world and the web-based tools. In addition, agents maintain a persistent external model of designs in the 3D world which can be augmented with data such as relationships, disciplines and versions not usually associated with 3D virtual worlds but required in design scenarios.
Resumo:
Maintenance of bridge structures is a major issue for the Queensland Department of Main Roads. In the previous phase of this CRC project an initial approach was made towards the development of a program for lifetime prediction of metallic bridge components. This involved the analysis of five representative bridge structures with respect to salt deposition (a major contributor to metallic corrosion) to determine common elements to be used as “cases” - those defined for buildings are not applicable. The five bridges analysed included the Gladstone Port Access Road Overpass, Stewart Road Overpass, South Johnstone River Bridge, Johnson Creek Bridge and the Ward River Bridge.
Resumo:
This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source.
Resumo:
In the previous phase of this project, 2002-059-B Case-Based Reasoning in Construction and Infrastructure Projects, demonstration software was developed using a case-base reasoning engine to access a number of sources of information on lifetime of metallic building components. One source of information was data from the Queensland Department of Public Housing relating to maintenance operations over a number of years. Maintenance information is seen as being a particularly useful source of data about service life of building components as it relates to actual performance of materials in the working environment. If a building is constructed in 1984 and the maintenance records indicate that the guttering was replaced in 2006, then the service life of the gutters was 22 years in that environment. This phase of the project aims to look more deeply at the Department of Housing data, as an example of maintenance records, and formulate methods for using this data to inform the knowledge of service lifetimes.
Resumo:
This project is an extension of a previous CRC project (220-059-B) which developed a program for life prediction of gutters in Queensland schools. A number of sources of information on service life of metallic building components were formed into databases linked to a Case-Based Reasoning Engine which extracted relevant cases from each source.
Resumo:
Maintenance of bridge structures is a major issue for the Queensland Department of Main Roads. In the previous phase of this CRC project an initial approach was made towards the development of a program for lifetime prediction of metallic bridge components. This involved the analysis of five representative bridge structures with respect to salt deposition (a major contributor to metallic corrosion) to determine common elements to be used as “cases” - those defined for buildings are not applicable. The five bridges analysed included the Gladstone Port Access Road Overpass, Stewart Road Overpass, South Johnstone River Bridge, Johnson Creek Bridge and the Ward River Bridge.
Resumo:
A survey of a number of schools in a number of different climates was carried out to determine the condition of building components of interest in the project. Schools in Melbourne, the Victorian Surf Coast, Brisbane, Townsville and the Sunshine Coast were inspected. A rating system was devised to categorise the components and the results collated in tables. Analysis of the data (where sufficient examples permitted) resulted in formulae to predict the service of the components and a database was derived.
Resumo:
This report documents work carried out in order to develop and prove a model for predicting the lifetime of painted metal components, with a particular emphasis on Colorbond® due to its prominent use throughout Australia. This work continues on from previous developments reported in 2002-059-B No. 12 [1]. Extensions of work included the following research: (1) Experimental proving of the leaching of chromate inhibitors from Colorbond® materials. (2) Updated models for the accumulation of salts and the time of wetness for gutters, based upon field observations. (3) Electrochemical Impedance Spectroscopy investigations aimed at correlating the corrosion rates of weathered Colorbond® with those predicted by modeling.
Resumo:
Realistic estimates of short- and long-term (strategic) budgets for maintenance and rehabilitation of road assessment management should consider the stochastic characteristics of asset conditions of the road networks so that the overall variability of road asset data conditions is taken into account. The probability theory has been used for assessing life-cycle costs for bridge infrastructures by Kong and Frangopol (2003), Zayed et.al. (2002), Kong and Frangopol (2003), Liu and Frangopol (2004), Noortwijk and Frangopol (2004), Novick (1993). Salem 2003 cited the importance of the collection and analysis of existing data on total costs for all life-cycle phases of existing infrastructure, including bridges, road etc., and the use of realistic methods for calculating the probable useful life of these infrastructures (Salem et. al. 2003). Zayed et. al. (2002) reported conflicting results in life-cycle cost analysis using deterministic and stochastic methods. Frangopol et. al. 2001 suggested that additional research was required to develop better life-cycle models and tools to quantify risks, and benefits associated with infrastructures. It is evident from the review of the literature that there is very limited information on the methodology that uses the stochastic characteristics of asset condition data for assessing budgets/costs for road maintenance and rehabilitation (Abaza 2002, Salem et. al. 2003, Zhao, et. al. 2004). Due to this limited information in the research literature, this report will describe and summarise the methodologies presented by each publication and also suggest a methodology for the current research project funded under the Cooperative Research Centre for Construction Innovation CRC CI project no 2003-029-C.
Resumo:
Durability issues of reinforced concrete construction cost millions of dollars in repair or demolition. Identification of the causes of degradation and a prediction of service life based on experience, judgement and local knowledge has limitations in addressing all the associated issues. The objective of this CRC CI research project is to develop a tool that will assist in the interpretation of the symptoms of degradation of concrete structures, estimate residual capacity and recommend cost effective solutions. This report is a documentation of the research undertaken in connection with this project. The primary focus of this research is centred on the case studies provided by Queensland Department of Main Roads (QDMR) and Brisbane City Council (BCC). These organisations are endowed with the responsibility of managing a huge volume of bridge infrastructure in the state of Queensland, Australia. The main issue to be addressed in managing these structures is the deterioration of bridge stock leading to a reduction in service life. Other issues such as political backlash, public inconvenience, approach land acquisitions are crucial but are not within the scope of this project. It is to be noted that deterioration is accentuated by aggressive environments such as salt water, acidic or sodic soils. Carse, 2005, has noted that the road authorities need to invest their first dollars in understanding their local concretes and optimising the durability performance of structures and then look at potential remedial strategies.
Resumo:
Much recent research into citizen journalism has focussed on its role in political debate and deliberation. Such research examines important questions about citizen participation in democratic processes – however, it perhaps places undue focus on only one area of journalistic coverage, and presents a challenge which only a small number of citizen journalism projects can realistically hope to meet. A greater opportunity for broad-based citizen involvement in journalistic activities may lie outside of politics, in the coverage of everyday community life. A leading exponent of this approach is the German-based citizen journalism Website myHeimat.de, which provides a nationwide platform for participants to contribute reports about events in their community. myHeimat takes a hyperlocal approach but also allows for content aggregation on specific topics across multiple local communities; Hannover-based newspaper publishing house Madsack has recently acquired a stake in the project. Drawing on extensive interviews with myHeimat CEO Martin Huber and Madsack newspaper editors Peter Taubald and Clemens Wlokas during October 2008, this paper analyses the myHeimat project and examines its applicability beyond rural and regional areas in Germany; it investigates the question of what role citizen journalism may play beyond the political realm.
Resumo:
This paper provides an overview of the Australian Government’s Facilities Management (FM) Action Agenda as announced in 2004 as a key policy plank designed to facilitate growth of the FM industry. The resulting consultation with industry leaders has seen the criterion and release in April 2005 of the FM Action Agenda’s strategic plan entitled ‘Managing the Built Environment’. This framework, representing a collaboration between the Australian Government, public and private sector stakeholders and Facility Management Association of Australia (FMA Australia) and other allied bodies, sets out to achieve the vision of a more “…productive and sustainable built environment…” through improved innovation, education and standards. The 36 month implementation phase is now underway and will take a multi-pronged approach to enhancing the recognition of the FM industry and removing impediments to its growth with a 20 point action plan across the following platforms: • Innovation – Improved appreciation of facility life cycles, and greater understanding of the key drivers of workplace productivity, and the improved application of information technology. • Education and Training – Improved access to dedicated FM education and training opportunities and creation clear career pathways into the profession. • Regulatory Reform – Explore opportunities to harmonise cross jurisdictional regulatory compliance requirements that have an efficiency impact on FM. • Sustainability – Improved utilization of existing knowledge and the development of tools and opportunities to improve the environmental performance of facilities. Additional information is available at www.fma.com.au