157 resultados para Fixed resin bonded partial denture
Resumo:
Objective The aim of this study was to demonstrate the potential of near-infrared (NIR) spectroscopy for categorizing cartilage degeneration induced in animal models. Method Three models of osteoarthritic degeneration were induced in laboratory rats via one of the following methods: (i) menisectomy (MSX); (ii) anterior cruciate ligament transaction (ACLT); and (iii) intra-articular injection of mono-ido-acetete (1 mg) (MIA), in the right knee joint, with 12 rats per model group. After 8 weeks, the animals were sacrificed and tibial knee joints were collected. A custom-made nearinfrared (NIR) probe of diameter 5 mm was placed on the cartilage surface and spectral data were acquired from each specimen in the wavenumber range 4 000 – 12 500 cm−1. Following spectral data acquisition, the specimens were fixed and Safranin–O staining was performed to assess disease severity based on the Mankin scoring system. Using multivariate statistical analysis based on principal component analysis and partial least squares regression, the spectral data were then related to the Mankinscores of the samples tested. Results Mild to severe degenerative cartilage changes were observed in the subject animals. The ACLT models showed mild cartilage degeneration, MSX models moderate, and MIA severe cartilage degenerative changes both morphologically and histologically. Our result demonstrate that NIR spectroscopic information is capable of separating the cartilage samples into different groups relative to the severity of degeneration, with NIR correlating significantly with their Mankinscore (R2 = 88.85%). Conclusion We conclude that NIR is a viable tool for evaluating articularcartilage health and physical properties such as change in thickness with degeneration.
Resumo:
Vapour phase assembly has been used for the first time to prepare co-crystals in which the primary intermolecular interaction is halogen bonding. Co-crystals of the nitroxide 1,1,3,3-tetramethylisoindolin-2-yloxyl (TMIO) and 1,2-diiodotetrafluorobenzene (1,2-DITFB) are readily formed under standard sublimation conditions. Single crystal X-ray diffraction confirmed the structure of a 2:2 cyclic tetramer, (TMIO)2·(1,2-DITFB)2, which exhibits a new halogen bonding motif, with each nitroxide oxygen atom accepting two halogen bonds. Powder X-ray diffraction confirmed the homogeneity of the bulk sample. The crystalline complex was further characterized in the solid state using thermal analysis and vibrational spectroscopy (infrared and Raman). Density functional theory calculations were also used to evaluate the enthalpy of formation, electrostatic potential and unpaired electron density of the complex. These findings illustrate the preparation of co-crystals where solution state methodology is problematic and the potential of this approach for the formation of novel organic spin systems.
Resumo:
This paper presents the application of a monocular visual SLAMon a fixed-wing small Unmanned Aerial System (sUAS) capable of simultaneous estimation of aircraft pose and scene structure. We demonstrate the robustness of unconstrained vision alone in producing reliable pose estimates of a sUAS, at altitude. It is ultimately capable of online state estimation feedback for aircraft control and next-best-view estimation for complete map coverage without the use of additional sensors.We explore some of the challenges of visual SLAM from a sUAS including dealing with planar structure, distant scenes and noisy observations. The developed techniques are applied on vision data gathered from a fast-moving fixed-wing radio control aircraft flown over a 1×1km rural area at an altitude of 20-100m.We present both raw Structure from Motion results and a SLAM solution that includes FAB-MAP based loop-closures and graph-optimised pose. Timing information is also presented to demonstrate near online capabilities. We compare the accuracy of the 6-DOF pose estimates to an off-the-shelfGPS aided INS over a 1.7kmtrajectory.We also present output 3D reconstructions of the observed scene structure and texture that demonstrates future applications in autonomous monitoring and surveying.
Resumo:
The conversion of biomass waste in the form of date seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from these date seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collector. The date seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 50 wt.% is obtained at a reactor bed temperature of 5000 C for a feed size volume of 0.11- 0.20 cm3 with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and also with conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived pyrolysis oils.
Design and construction of fixed bed pyrolysis system and plum seed pyrolysis for bio-oil production
Resumo:
This work investigated the production of bio oil from plum seed (Zyziphus jujuba) by fixed bed pyrolysis technology. A fixed bed pyrolysis system has been designed and fabricated for production of bio oil. The major components of the system are: fixed bed reactor, liquid condenser and liquid collector. Nitrogen gas was used to maintain the inert atmosphere in the reactor where the pyrolysis reaction takes place. The feedstock considered in this study is plum seed as it is available waste material in Bangladesh. The reactor is heated by means of a cylindrical biomass external heater. Rice husk was used as the energy source. The products are oil, char and gas. The parameters varied are reactor bed temperature, running time and feed particle size. The parameters are found to influence the product yields significantly. The maximum liquid yield of 39 wt% at 5200C for a feed particle size of 2.36-4.75 mm and a gas flow rate of 8 liter/min with a running time of 120 minute. The pyrolysis oil obtained at these optimum process conditions are analyzed for some of their properties as an alternative fuel. The density of the liquid was closer with diesel. The viscosity of the plum seed liquid was lower than that of the conventional fuels. The calorific value of the pyrolysis oil is one half of the diesel fuel.
Resumo:
Among various thermo-chemical conversion processes, pyrolysis is considered as an emerging technology for liquid oil production. The conversion of biomass waste in the form of plum seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from this plum seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collectors. The plum seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 39 wt% of biomass feed is obtained with particle size of 2.36-4.75 mm at a reactor bed temperature of 520oC with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 22.39 MJ/kg which is higher than other biomass derived pyrolysis oils.
Resumo:
The structures of the compounds from the reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with 4-chloroaniline [rac-N-(4-chlorophenyl)-2-carboxycycloclohexane-1-carboxamide] (1), 4-bromoaniline [2-(4-bromophenyl)-perhydroisoindolyl-1,3-dione] (2) and 3-hydroxy-4-carboxyaniline (5-aminosalicylic acid) [2-(3-hydroxy-4-carboxyphenyl)-perhydroisoindolyl-1,3-dione] (3) have been determined at 200 K. Crystals of the open-chain amide carboxylic acid 1 are orthorhombic, space group Pbcn, with unit cell dimensions a = 20.1753(10), b = 8.6267(4), c = 15.9940(9) Å, and Z = 8. Compounds 2 and 3 are cyclic imides, with 1 monoclinic having space group P21 and cell dimensions a = 11.5321(3), b = 6.7095(2), c = 17.2040(5) Å, β = 102.527(3)o. Compound 3 is orthorhombic with cell dimensions a = 6.4642(3), b = 12.8196(5), c = 16.4197(7) Å. Molecules of 1 form hydrogen-bonded cyclic dimers which are extended into a two-dimensional layered structure through amide-group associations: 3 forms into one-dimensional zigzag chains through carboxylic acid…imide O-atom hydrogen bonds, while compound 2 is essentially unassociated. With both cyclic imides 2 and 3, disorder is found which involves the presence of partial enantiomeric replacement of the cis-cyclohexane-1,2-substituted ring systems.
Resumo:
The crystal structures of the 1:1 proton-transfer compounds of isonipecotamide (piperidine-4-carboxamide) with the monocyclic heteroaromatic carboxylic acids, isonicotinic acid, picolinic acid, dipicolinic acid and pyrazine-2,3-dicarboxylic acid have been determined at 200 K and their hydrogen-bonding patterns examined. The compounds are respectively anhydrous 4-carbamoylpiperidinium pyridine-4-carboxylate (1), the partial hydrate 4-carbamoylpiperidinium pyridine-2-carboxylate 0.25 water (2), the solvate 4-carbamoylpiperidinium 6-carboxypyridine-2-carboxylate methanol monosolvate (3), and anhydrous 4-carbamoylpiperidinium 3-carboxypyrazine-2-carboxylate (4). In compounds 1 and 3, hydrogen-bonding interactions give two-dimensional sheet structures which feature enlarged cyclic ring systems, while in compounds 2 and 4, three-dimensional structures are found. The previously described cyclic R2/2(8) hydrogen-bonded amide-amide dimer is present in 2 and 3. The hydrogen-bonding in 2 involves the partial-occupancy water molecule while the structure of 4 is based on inter-linked homomolecular hydrogen-bonded cation-cation and anion-anion associated chains comprising head-to-tail interactions. This work further demonstrates the utility of the isonipecotamide cation in the generation of chemically stable hydrogen-bonded systems, particularly with aromatic carboxylate anions, providing crystalline solids.
Resumo:
In this paper, we propose a novel relay ordering and scheduling strategy for the sequential slotted amplify-and-forward (SAF) protocol and evaluate its performance in terms of diversity-multiplexing trade-off (DMT). The relays between the source and destination are grouped into two relay clusters based on their respective locations. The proposed strategy achieves partial relay isolation and decreases the decoding complexity at the destination. We show that the DMT upper bound of sequential-SAF with the proposed strategy outperforms other amplify and forward protocols and is more practical compared to the relay isolation assumption made in the original paper [1]. Simulation result shows that the sequential-SAF protocol with the proposed strategy has better outage performance compared to the existing AF and non-cooperative protocols in high SNR regime.
Resumo:
To study the phase relations in the Bi-2212 and Yb2O3 system, Bi2Sr2Ca1-xYbxCu 2Oy thick films are prepared by partial melt processing via an intermediate reaction between Bi-2212 and Yb2O3. When Bi-2212 and Yb2O3 are partially melted and then slowly cooled, solid solutions of Bi2Sr2Ca 1-xYbxCu2Oy, form by reactions between liquid and solid phases which contain Yb. Following these reactions, Ca is partially replaced in Bi-2212 matrix and participates in the formation of secondary phases, such as Bi-free, (Ca, Sr)Ox and CaO. Variation of the Bi-2212-Yb2O3 ratios and processing parameters changes the balance between the phases and leads to different Yb:Ca ratios in the Bi-2212 matrix of processed thick films. When the partial melting process is optimized for each sample to minimize the growth of secondary phases, x = 0.42-0.46 for the samples prepared at pO2 = 0.01 atm, x = 0.24-0.29 for the samples prepared at pO2 = 0.21 atm, x = 0.18-0.23 for the samples prepared at pO2 = 0.99 atm are obtained regardless to the starting compositions. It is found that superconducting properties of Bi 2Sr2Ca1-xYbxCu2O y thick films strongly depend on the processing conditions, because the conditions result in different Yb content in the Bi-2212 matrix and the volume fraction of the secondary phases. The highest Tc(0) of 77, 90 and 91 K were obtained for the samples processed at 0.01, 0.21 and 0.99 atm of O2, respectively.
Resumo:
Bi-2212 tapes are prepared by a combination of dip-coating and partial melt processing. We investigate the effect of re-melting of those tapes by partial melting followed by slow cooling on the structure and superconducting properties. Microstructural studies of re-melted samples show that they have the same overall composition as partially melted tapes. However, the fractional volumes of the secondary phases differ and the amounts and distribution of the secondary phases have a significant effect on the critical current. Critical current of Bi-2212/Ag tapes strongly depends on the maximum processing temperature. Initial J(c)'s of the tapes, which are partially melted, then slowly solidified at optimum conditions and finally post-annealed in an inert atmosphere, are up to 10.4 x 10(3) A/cm(2). It is found that the maximum processing temperature at initial partial melting has an influence on the optimum re-heat treatment conditions for the tapes. Re-melted tapes processed at optimum conditions recover superconducting properties after post-annealing in an inert atmosphere: the J(c) values of the tapes are about 80-110% of initial J(c)'s of those tapes.
Resumo:
Superconducting thick films of Bi2Sr2CaCu2Oy (Bi-2212) on single-crystalline (100) MgO substrates have been prepared using a doctor-blade technique and a partial-melt process. It is found that the phase composition and the amount of Ag addition to the paste affect the structure and superconducting properties of the partially melted thick films. The optimum heat treatment schedule for obtaining high Jc has been determined for each paste. The heat treatment ensures attainment of high purity for the crystalline Bi-2212 phase and high orientation of Bi-2212 crystals, in which the c-axis is perpendicular to the substrate. The highest Tc, obtained by resistivity measurement, is 92.2 K. The best value for Jct (transport) of these thick films, measured at 77 K in self-field, is 8 × 10 3 Acm -2.
Resumo:
This paper presents an Image Based Visual Servo control design for Fixed Wing Unmanned Aerial Vehicles tracking locally linear infrastructure in the presence of wind using a body fixed imaging sensor. Visual servoing offers improved data collection by posing the tracking task as one of controlling a feature as viewed by the inspection sensor, although is complicated by the introduction of wind as aircraft heading and course angle no longer align. In this work it is shown that the effects of wind alter the desired line angle required for continuous tracking to equal the wind correction angle as would be calculated to set a desired course. A control solution is then sort by linearizing the interaction matrix about the new feature pose such that kinematics of the feature can be augmented with the lateral dynamics of the aircraft, from which a state feedback control design is developed. Simulation results are presented comparing no compensation, integral control and the proposed controller using the wind correction angle, followed by an assessment of response to atmospheric disturbances in the form of turbulence and wind gusts
Resumo:
This paper has presented the details of an investigation into the flexural and flexuraltorsional buckling behaviour of cold-formed structural steel columns with pinned and fixed ends. Current design rules for the member capacities of cold-formed steel columns are based on the same non-dimensional strength curve for both fixed and pinned-ended columns. This research has reviewed the accuracy of the current design rules in AS/NZS 4600 and the North American Specification in determining the member capacities of cold-formed steel columns using the results from detailed finite element analyses and an experimental study of lipped channel columns. It was found that the current Australian and American design rules accurately predicted the member capacities of pin ended lipped channel columns undergoing flexural and flexural torsional buckling. However, for fixed ended columns with warping fixity undergoing flexural-torsional buckling, it was found that the current design rules significantly underestimated the column capacities as they disregard the beneficial effect of warping fixity. This paper has therefore proposed improved design rules and verified their accuracy using finite element analysis and test results of cold-formed lipped channel columns made of three cross-sections and five different steel grades and thicknesses.