82 resultados para Filter cane
Resumo:
Wilmar’s Pioneer Sugar mill has a need to replace some small rotary vacuum filters (RVFs) due to the condition of existing aged plant. A vacuum belt press filter (VBPF) manufactured by Technopulp of Brazil was purchased and installed at Pioneer Mill in September/October 2012 and commissioning trials undertaken over a five week period commencing in early November. There are no vacuum belt press filters currently in use in Australian sugar mills for mud processing. The Technopulp filter is a relatively common and well accepted technology with over 600 units installed. The main attractions for the VBPF to Pioneer Mill were…
Resumo:
Derailments are a significant cost to the Australian sugar industry with damage to rail infrastructure and rolling stock in excess of $2 M per annum. Many factors can contribute to cane rail derailments. The more prevalent factors are discussed. Derailment statistics on likely causes for cane rail derailments are presented with the case of empty wagons on the main line being the highest contributor to business cost. Historically, the lateral to vertical wheel load ratio, termed the derailment ratio, has been used to indicate the derailment probability of rolling stock. When the derailment ratio reaches the Nadal limit of 0.81 for cane rail operations, there is a high probability that a derailment will occur. Contributing factors for derailments include the operating forces, the geometric variables of the rolling stock and the geometric deviations of the railway track. These combined, have the capacity to affect the risk of derailment for a cane rail transport operating system. The derailment type that is responsible for creating the most damage to assets and creating mill stops is the flange climb derailment, as these derailments usually occur at speed with a full rake of empty wagons. The typical forces that contribute to the flange climb derailment case for cane rail operations are analysed and a practical derailment model is developed to enable operators to better appreciate the most significant contributing factors to this type of derailment. The paper aims to: (a) improve awareness of the significance of physical operating parameters so that these principles can be included in locomotive driver training and (b) improve awareness of track and wagon variables related to the risk of derailment so that maintainers of the rail system can allocate funds for maintenance more effectively.
Resumo:
Biotechnology has the potential to improve sugar cane, one of the world's major crops for food and fuel. This research describes the detailed characterisation of introns and their potential for enhancing transgene expression in sugar cane via intron-mediated enhancement (IME). IME is a phenomenon whereby an intron enhances gene expression from a promoter. Current knowledge on the mechanism of IME or its potential for enhancing gene expression in sugar cane is limited. A better understanding of the factors responsible for IME will help develop new molecular tools that facilitate high levels of constitutive and tissue-specific gene expression in this crop.
Resumo:
Australia is the world’s third largest exporter of raw sugar after Brazil and Thailand, with around $2.0 billion in export earnings. Transport systems play a vital role in the raw sugar production process by transporting the sugarcane crop between farms and mills. In 2013, 87 per cent of sugarcane was transported to mills by cane railway. The total cost of sugarcane transport operations is very high. Over 35% of the total cost of sugarcane production in Australia is incurred in cane transport. A cane railway network mainly involves single track sections and multiple track sections used as passing loops or sidings. The cane railway system performs two main tasks: delivering empty bins from the mill to the sidings for filling by harvesters; and collecting the full bins of cane from the sidings and transporting them to the mill. A typical locomotive run involves an empty train (locomotive and empty bins) departing from the mill, traversing some track sections and delivering bins at specified sidings. The locomotive then, returns to the mill, traversing the same track sections in reverse order, collecting full bins along the way. In practice, a single track section can be occupied by only one train at a time, while more than one train can use a passing loop (parallel sections) at a time. The sugarcane transport system is a complex system that includes a large number of variables and elements. These elements work together to achieve the main system objectives of satisfying both mill and harvester requirements and improving the efficiency of the system in terms of low overall costs. These costs include delay, congestion, operating and maintenance costs. An effective cane rail scheduler will assist the traffic officers at the mill to keep a continuous supply of empty bins to harvesters and full bins to the mill with a minimum cost. This paper addresses the cane rail scheduling problem under rail siding capacity constraints where limited and unlimited siding capacities were investigated with different numbers of trains and different train speeds. The total operating time as a function of the number of trains, train shifts and a limited number of cane bins have been calculated for the different siding capacity constraints. A mathematical programming approach has been used to develop a new scheduler for the cane rail transport system under limited and unlimited constraints. The new scheduler aims to reduce the total costs associated with the cane rail transport system that are a function of the number of bins and total operating costs. The proposed metaheuristic techniques have been used to find near optimal solutions of the cane rail scheduling problem and provide different possible solutions to avoid being stuck in local optima. A numerical investigation and sensitivity analysis study is presented to demonstrate that high quality solutions for large scale cane rail scheduling problems are obtainable in a reasonable time. Keywords: Cane railway, mathematical programming, capacity, metaheuristics
Resumo:
Social media platforms risk polarising public opinions by employing proprietary algorithms that produce filter bubbles and echo chambers. As a result, the ability of citizens and communities to engage in robust debate in the public sphere is diminished. In response, this paper highlights the capacity of urban interfaces, such as pervasive displays, to counteract this trend by exposing citizens to the socio-cultural diversity of the city. Engagement with different ideas, networks and communities is crucial to both innovation and the functioning of democracy. We discuss examples of urban interfaces designed to play a key role in fostering this engagement. Based on an analysis of works empirically-grounded in field observations and design research, we call for a theoretical framework that positions pervasive displays and other urban interfaces as civic media. We argue that when designed for more than wayfinding, advertisement or television broadcasts, urban screens as civic media can rectify some of the pitfalls of social media by allowing the polarised user to break out of their filter bubble and embrace the cultural diversity and richness of the city.
Resumo:
Cane railway systems provide empty bins for harvesters to fill and full bins of cane for the factory to process. These operations need to be conducted in a timely fashion to minimise delays to harvesters and the factory and to minimise the cut-to-crush delay, while also minimising the cost of providing this service. A range of tools has been provided over the years to assist in this process. This paper reviews the objectives of the cane transport system and the tools available to achieve those objectives. The facilities within these tools to assist in the control of costs are highlighted.