272 resultados para Feature grouping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is a big challenge to guarantee the quality of discovered relevance features in text documents for describing user preferences because of large scale terms and data patterns. Most existing popular text mining and classification methods have adopted term-based approaches. However, they have all suffered from the problems of polysemy and synonymy. Over the years, there has been often held the hypothesis that pattern-based methods should perform better than term-based ones in describing user preferences; yet, how to effectively use large scale patterns remains a hard problem in text mining. To make a breakthrough in this challenging issue, this paper presents an innovative model for relevance feature discovery. It discovers both positive and negative patterns in text documents as higher level features and deploys them over low-level features (terms). It also classifies terms into categories and updates term weights based on their specificity and their distributions in patterns. Substantial experiments using this model on RCV1, TREC topics and Reuters-21578 show that the proposed model significantly outperforms both the state-of-the-art term-based methods and the pattern based methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a growing interest in alignment-free methods for phylogenetic analysis using complete genome data. Among them, CVTree method, feature frequency profiles method and dynamical language approach were used to investigate the whole-proteome phylogeny of large dsDNA viruses. Using the data set of large dsDNA viruses from Gao and Qi (BMC Evol. Biol. 2007), the phylogenetic results based on the CVTree method and the dynamical language approach were compared in Yu et al. (BMC Evol. Biol. 2010). In this paper, we first apply dynamical language approach to the data set of large dsDNA viruses from Wu et al. (Proc. Natl. Acad. Sci. USA 2009) and compare our phylogenetic results with those based on the feature frequency profiles method. Then we construct the whole-proteome phylogeny of the larger dataset combining the above two data sets. According to the report of The International Committee on the Taxonomy of Viruses (ICTV), the trees from our analyses are in good agreement to the latest classification of large dsDNA viruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mandatory reporting is a key aspect of Australia’s approach to protecting children and is incorporated into all jurisdictions’ legislation, albeit in a variety of forms. In this article we examine all major newspaper’s coverage of mandatory reporting during an 18-month period in 2008-2009, when high-profile tragedies and inquiries occurred and significant policy and reform agendas were being debated. Mass media utilise a variety of lenses to inform and shape public responses and attitudes to reported events. We use frame analysis to identify the ways in which stories were composed and presented, and how language portrayed this contested area of policy. The results indicate that within an overall portrayal of system failure and the need for reform, the coverage placed major responsibility on child protection agencies for the over-reporting, under-reporting, and overburdened system identified, along with the failure of mandatory reporting to reduce risk. The implications for ongoing reform are explored along with the need for robust research to inform debate about the merits of mandatory reporting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter takes as its central premise the human capacity to adapt to changing environments. It is an idea that is central to complexity theory but receives only modest attention in relation to learning. To do this we will draw from a range of fields and then consider some recent research in motor control that may extend the discussion in ways not yet considered, but that will build on advances already made within pedagogy and motor control synergies. Recent work in motor control indicates that humans have far greater capacity to adapt to the ‘product space’ than was previously thought, mainly through fast heuristics and on-line corrections. These are changes that can be made in real (movement) time and are facilitated by what are referred to as ‘feed-forward’ mechanisms that take advantage of ultra-fast ways of recognizing the likely outcomes of our movements and using this as a source of feedback. We conclude by discussing some possible ideas for pedagogy within the sport and physical activity domains, the implications of which would require a rethink on how motor skill learning opportunities might best be facilitated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mean shift tracker has achieved great success in visual object tracking due to its efficiency being nonparametric. However, it is still difficult for the tracker to handle scale changes of the object. In this paper, we associate a scale adaptive approach with the mean shift tracker. Firstly, the target in the current frame is located by the mean shift tracker. Then, a feature point matching procedure is employed to get the matched pairs of the feature point between target regions in the current frame and the previous frame. We employ FAST-9 corner detector and HOG descriptor for the feature matching. Finally, with the acquired matched pairs of the feature point, the affine transformation between target regions in the two frames is solved to obtain the current scale of the target. Experimental results show that the proposed tracker gives satisfying results when the scale of the target changes, with a good performance of efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an overview of the QUT plant classification system submitted to LifeCLEF 2014. This system uses generic features extracted from a convolutional neural network previously used to perform general object classification. We examine the effectiveness of these features to perform plant classification when used in combination with an extremely randomised forest. Using this system, with minimal tuning, we obtained relatively good results with a score of 0:249 on the test set of LifeCLEF 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we propose a highly reliable fault diagnosis scheme for incipient low-speed rolling element bearing failures. The scheme consists of fault feature calculation, discriminative fault feature analysis, and fault classification. The proposed approach first computes wavelet-based fault features, including the respective relative wavelet packet node energy and entropy, by applying a wavelet packet transform to an incoming acoustic emission signal. The most discriminative fault features are then filtered from the originally produced feature vector by using discriminative fault feature analysis based on a binary bat algorithm (BBA). Finally, the proposed approach employs one-against-all multiclass support vector machines to identify multiple low-speed rolling element bearing defects. This study compares the proposed BBA-based dimensionality reduction scheme with four other dimensionality reduction methodologies in terms of classification performance. Experimental results show that the proposed methodology is superior to other dimensionality reduction approaches, yielding an average classification accuracy of 94.9%, 95.8%, and 98.4% under bearing rotational speeds at 20 revolutions-per-minute (RPM), 80 RPM, and 140 RPM, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The speed at which target pictures are named increases monotonically as a function of prior retrieval of other exemplars of the same semantic category and is unaffected by the number of intervening items. This cumulative semantic interference effect is generally attributed to three mechanisms: shared feature activation, priming and lexical-level selection. However, at least two additional mechanisms have been proposed: (1) a 'booster' to amplify lexical-level activation and (2) retrieval-induced forgetting (RIF). In a perfusion functional Magnetic Resonance Imaging (fMRI) experiment, we tested hypotheses concerning the involvement of all five mechanisms. Our results demonstrate that the cumulative interference effect is associated with perfusion signal changes in the left perirhinal and middle temporal cortices that increase monotonically according to the ordinal position of exemplars being named. The left inferior frontal gyrus (LIFG) also showed significant perfusion signal changes across ordinal presentations; however, these responses did not conform to a monotonically increasing function. None of the cerebral regions linked with RIF in prior neuroimaging and modelling studies showed significant effects. This might be due to methodological differences between the RIF paradigm and continuous naming as the latter does not involve practicing particular information. We interpret the results as indicating priming of shared features and lexical-level selection mechanisms contribute to the cumulative interference effect, while adding noise to a booster mechanism could account for the pattern of responses observed in the LIFG.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How does the presence of a categorically related word influence picture naming latencies? In order to test competitive and noncompetitive accounts of lexical selection in spoken word production, we employed the picture–word interference (PWI) paradigm to investigate how conceptual feature overlap influences naming latencies when distractors are category coordinates of the target picture. Mahon et al. (2007. Lexical selection is not by competition: A reinterpretation of semantic interference and facilitation effects in the picture-word interference paradigm. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33(3), 503–535. doi:10.1037/0278-7393.33.3.503) reported that semantically close distractors (e.g., zebra) facilitated target picture naming latencies (e.g., HORSE) compared to far distractors (e.g., whale). We failed to replicate a facilitation effect for within-category close versus far target–distractor pairings using near-identical materials based on feature production norms, instead obtaining reliably larger interference effects (Experiments 1 and 2). The interference effect did not show a monotonic increase across multiple levels of within-category semantic distance, although there was evidence of a linear trend when unrelated distractors were included in analyses (Experiment 2). Our results show that semantic interference in PWI is greater for semantically close than for far category coordinate relations, reflecting the extent of conceptual feature overlap between target and distractor. These findings are consistent with the assumptions of prominent competitive lexical selection models of speech production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As of today, user-generated information such as online reviews has become increasingly significant for customers in decision making process. Meanwhile, as the volume of online reviews proliferates, there is an insistent demand to help the users tackle the information overload problem. In order to extract useful information from overwhelming reviews, considerable work has been proposed such as review summarization and review selection. Particularly, to avoid the redundant information, researchers attempt to select a small set of reviews to represent the entire review corpus by preserving its statistical properties (e.g., opinion distribution). However, one significant drawback of the existing works is that they only measure the utility of the extracted reviews as a whole without considering the quality of each individual review. As a result, the set of chosen reviews may consist of low-quality ones even its statistical property is close to that of the original review corpus, which is not preferred by the users. In this paper, we proposed a review selection method which takes review quality into consideration during the selection process. Specifically, we examine the relationships between product features based upon a domain ontology to capture the review characteristics based on which to select reviews that have good quality and preserve the opinion distribution as well. Our experimental results based on real world review datasets demonstrate that our proposed approach is feasible and able to improve the performance of the review selection effectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The latest generation of Deep Convolutional Neural Networks (DCNN) have dramatically advanced challenging computer vision tasks, especially in object detection and object classification, achieving state-of-the-art performance in several computer vision tasks including text recognition, sign recognition, face recognition and scene understanding. The depth of these supervised networks has enabled learning deeper and hierarchical representation of features. In parallel, unsupervised deep learning such as Convolutional Deep Belief Network (CDBN) has also achieved state-of-the-art in many computer vision tasks. However, there is very limited research on jointly exploiting the strength of these two approaches. In this paper, we investigate the learning capability of both methods. We compare the output of individual layers and show that many learnt filters and outputs of the corresponding level layer are almost similar for both approaches. Stacking the DCNN on top of unsupervised layers or replacing layers in the DCNN with the corresponding learnt layers in the CDBN can improve the recognition/classification accuracy and training computational expense. We demonstrate the validity of the proposal on ImageNet dataset.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Short-rib polydactyly syndromes (SRPS I-V) are a group of lethal congenital disorders characterized by shortening of the ribs and long bones, polydactyly, and a range of extraskeletal phenotypes. A number of other disorders in this grouping, including Jeune and Ellis-van Creveld syndromes, have an overlapping but generally milder phenotype. Collectively, these short-rib dysplasias (with or without polydactyly) share a common underlying defect in primary cilium function and form a subset of the ciliopathy disease spectrum. By using whole-exome capture and massive parallel sequencing of DNA from an affected Australian individual with SRPS type III, we detected two novel heterozygous mutations in WDR60, a relatively uncharacterized gene. These mutations segregated appropriately in the unaffected parents and another affected family member, confirming compound heterozygosity, and both were predicted to have a damaging effect on the protein. Analysis of an additional 54 skeletal ciliopathy exomes identified compound heterozygous mutations in WDR60 in a Spanish individual with Jeune syndrome of relatively mild presentation. Of note, these two families share one novel WDR60 missense mutation, although haplotype analysis suggested no shared ancestry. We further show that WDR60 localizes at the base of the primary cilium in wild-type human chondrocytes, and analysis of fibroblasts from affected individuals revealed a defect in ciliogenesis and aberrant accumulation of the GLI2 transcription factor at the centrosome or basal body in the absence of an obvious axoneme. These findings show that WDR60 mutations can cause skeletal ciliopathies and suggest a role for WDR60 in ciliogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Frog protection has become increasingly essential due to the rapid decline of its biodiversity. Therefore, it is valuable to develop new methods for studying this biodiversity. In this paper, a novel feature extraction method is proposed based on perceptual wavelet packet decomposition for classifying frog calls in noisy environments. Pre-processing and syllable segmentation are first applied to the frog call. Then, a spectral peak track is extracted from each syllable if possible. Track duration, dominant frequency and oscillation rate are directly extracted from the track. With k-means clustering algorithm, the calculated dominant frequency of all frog species is clustered into k parts, which produce a frequency scale for wavelet packet decomposition. Based on the adaptive frequency scale, wavelet packet decomposition is applied to the frog calls. Using the wavelet packet decomposition coefficients, a new feature set named perceptual wavelet packet decomposition sub-band cepstral coefficients is extracted. Finally, a k-nearest neighbour (k-NN) classifier is used for the classification. The experiment results show that the proposed features can achieve an average classification accuracy of 97.45% which outperforms syllable features (86.87%) and Mel-frequency cepstral coefficients (MFCCs) feature (90.80%).