977 resultados para Dialogical approach
Resumo:
Changes in fluidization behaviour behaviour was characterised for parallelepiped particles with three aspect ratios, 1:1, 2:1 and 3:1 and spherical particles. All drying experiments were conducted at 500C and 15 % RH using a heat pump dehumidifier system. Fluidization experiments were undertaken for the bed heights of 100, 80, 60 and 40 mm and at 10 moisture content levels. Due to irregularities in shape minimum fluidisation velocity of parallelepiped particulates (potato) could not fitted to any empirical model. Also a generalized equation was used to predict minimum fluidization velocity. The modified quasi-stationary method (MQSM) has been proposed to describe drying kinetics of parallelepiped particulates at 30o C, 40o C and 50o C that dry mostly in the falling rate period in a batch type fluid bed dryer.
Resumo:
Providing support for reversible transformations as a basis for round-trip engineering is a significant challenge in model transformation research. While there are a number of current approaches, they require the underlying transformation to exhibit an injective behaviour when reversing changes. This however, does not serve all practical transformations well. In this paper, we present a novel approach to round-trip engineering that does not place restrictions on the nature of the underlying transformation. Based on abductive logic programming, it allows us to compute a set of legitimate source changes that equate to a given change to the target model. Encouraging results are derived from an initial prototype that supports most concepts of the Tefkat transformation language
Resumo:
We present a method for topological SLAM that specifically targets loop closing for edge-ordered graphs. Instead of using a heuristic approach to accept or reject loop closing, we propose a probabilistically grounded multi-hypothesis technique that relies on the incremental construction of a map/state hypothesis tree. Loop closing is introduced automatically within the tree expansion, and likely hypotheses are chosen based on their posterior probability after a sequence of sensor measurements. Careful pruning of the hypothesis tree keeps the growing number of hypotheses under control and a recursive formulation reduces storage and computational costs. Experiments are used to validate the approach.
Resumo:
Vibration based damage identification methods examine the changes in primary modal parameters or quantities derived from modal parameters. As one method may have advantages over the other under some circumstances, a multi-criteria approach is proposed. Case studies are conducted separately on beam, plate and plate-on-beam structures. Using the numerically simulated modal data obtained through finite element analysis software, algorithms based on flexibility and strain energy changes before and after damage are obtained and used as the indices for the assessment of the state of structural health. Results show that the proposed multi-criteria method is effective in damage identification in these structures.
Resumo:
The construction industry has adapted information technology in its processes in terms of computer aided design and drafting, construction documentation and maintenance. The data generated within the construction industry has become increasingly overwhelming. Data mining is a sophisticated data search capability that uses classification algorithms to discover patterns and correlations within a large volume of data. This paper presents the selection and application of data mining techniques on maintenance data of buildings. The results of applying such techniques and potential benefits of utilising their results to identify useful patterns of knowledge and correlations to support decision making of improving the management of building life cycle are presented and discussed.
Resumo:
Although the benefits of service orientation are prevalent in literature, a review, analysis, and evaluation of the 30 existing service analysis approaches presented in this paper have shown that a comprehensive approach to the identification and analysis of both business and supporting software services is missing. Based on this evaluation of existing approaches and additional sources, we close this gap by proposing an integrated, consolidated approach to business and software service analysis that combines and extends the strengths of the examined methodologies.
Resumo:
An important aspect of designing any product is validation. Virtual design process (VDP) is an alternative to hardware prototyping in which analysis of designs can be done without manufacturing physical samples. In recent years, VDP have been generated either for animation or filming applications. This paper proposes a virtual reality design process model on one of the applications when used as a validation tool. This technique is used to generate a complete design guideline and validation tool of product design. To support the design process of a product, a virtual environment and VDP method were developed that supports validation and an initial design cycle performed by a designer. The product model car carrier is used as illustration for which virtual design was generated. The loading and unloading sequence of the model for the prototype was generated using automated reasoning techniques and was completed by interactively animating the product in the virtual environment before complete design was built. By using the VDP process critical issues like loading, unloading, Australian Design rules (ADR) and clearance analysis were done. The process would save time, money in physical sampling and to large extent in complete math generation. Since only schematic models are required, it saves time in math modelling and handling of bigger size assemblies due to complexity of the models. This extension of VDP process for design evaluation is unique and was developed, implemented successfully. In this paper a Toll logistics and J Smith and Sons car carrier which is developed under author’s responsibility has been used to illustrate our approach of generating design validation via VDP.
Resumo:
Australia’s civil infrastructure assets of roads, bridges, railways, buildings and other structures are worth billions of dollars. Road assets alone are valued at around A$ 140 billion. As the condition of assets deteriorate over time, close to A$10 billion is spent annually in asset maintenance on Australia's roads, or the equivalent of A$27 million per day. To effectively manage road infrastructures, firstly, road agencies need to optimise the expenditure for asset data collection, but at the same time, not jeopardise the reliability in using the optimised data to predict maintenance and rehabilitation costs. Secondly, road agencies need to accurately predict the deterioration rates of infrastructures to reflect local conditions so that the budget estimates could be accurately estimated. And finally, the prediction of budgets for maintenance and rehabilitation must provide a certain degree of reliability. A procedure for assessing investment decision for road asset management has been developed. The procedure includes: • A methodology for optimising asset data collection; • A methodology for calibrating deterioration prediction models; • A methodology for assessing risk-adjusted estimates for life-cycle cost estimates. • A decision framework in the form of risk map
Resumo:
Over the past twenty years brand loyalty has been an important topic for both marketing practitioners and academics. While practitioners have produced proprietary brand loyalty audit models, there has been little academic research to make transparent the methodology that underpins these audits and to enable practitioners to understand, develop and conduct their own audits. In this paper, we propose a framework for a brand loyalty audit that uses a tri-dimensional approach to brand loyalty, which includes behavioural loyalty and the two components of attitudinal loyalty: emotional and cognitive loyalty. In allowing for different levels and intensity of brand loyalty, this tri-dimensional approach is important from a managerial perspective. It means that loyalty strategies that arise from a brand audit can be made more effective by targeting the market segments that demonstrate the most appropriate combination of brand loyalty components. We propose a matrix with three dimensions (emotional, cognitive and behavioural loyalty) and two levels (high and low loyalty) to facilitate a brand loyalty audit. To demonstrate this matrix, we use the example of financial services, in particular a rewards-based credit card.
Resumo:
A recent Australian survey of beginning teachers indicates that issue of classroom management continues to be a key concern for early career educators (Australian Education Union, 2007). This finding is supported by the wider literature that identifies managing the classroom, particularly managing behaviour within the classroom, as critical issues for early career teachers (Arends, 2006; Charles, 2004; Groundwater-Smith, Ewing & Le Cornu, 2007). In fact, struggling to manage student behaviour and maintain positive relationships with students are among the top reasons for teachers leaving the teaching profession (Charles, 2004). So, how does a teacher effectively organise and manage up to thirty students learning and behaviour at any one time? The issue of classroom management is a persistent one for all teachers, but is particularly daunting for new teachers. Historically, classrooms were established on strong hierarchical structures that relied heavily on teacher control and authority. However, more recent approaches to managing the classroom are proactive and more collaborative. That is not to say that there exists a single management recipe, far from it. Beginning teachers must view possible approaches to managing the classroom in light of their own beliefs about teaching and learning, their current classroom practice and variables from the context in which they are teaching.
Resumo:
The endeavour to obtain estimates of durability of components for use in lifecycle assessment or costing and infrastructure and maintenance planning systems is large. The factor method and the reference service life concept provide a very valuable structure, but do not resolve the central dilemma of the need to derive an extensive database of service life. Traditional methods of estimating service life, such as dose functions or degradation models, can play a role in developing this database, however the scale of the problem clearly indicates that individual dose functions cannot be derived for each component in each different local and geographic setting. Thus, a wider range of techniques is required in order to devise reference service life. This paper outlines the approaches being taken in the Cooperative Research Centre for Construction Innovation project to predict reference service life. Approaches include the development of fundamental degradation and microclimate models, the development of a situation-based reasoning ‘engine’ to vary the ‘estimator’ of service life, and the development of a database on expert performance (Delphi study). These methods should be viewed as complementary rather than as discrete alternatives. As discussed in the paper, the situation-based reasoning approach in fact has the possibility of encompassing all other methods.
Resumo:
Many factors have the potential to influence human health. These factors need to be monitored to maintain health. As is the case with human health, construction projects have a number of critical factors that can facilitate a broad evaluation of project health. In order to use these factors as an indication of health, they need to be assessed. This assessment can help to achieve desired outcomes for the project. This paper discusses the approach of assessing Critical Success Factors (CSFs) using Key Performance Indicators (KPIs) to ascertain the immediate health of a construction project. This approach is applicable to all phases of construction projects and many construction procurement methods. KPIs have been benchmarked on the basis of industry standards and historical data. The robustness of the KPIs to assess the immediate health of a project has been validated using Australian and international case studies.
Resumo:
Buildings consume resources and energy, contribute to pollution of our air, water and soil, impact the health and well-being of populations and constitute an important part of the built environment in which we live. The ability to assess their design with a view to reducing that impact automatically from their 3D CAD representations enables building design professionals to make informed decisions on the environmental impact of building structures. Contemporary 3D object-oriented CAD files contain a wealth of building information. LCADesign has been designed as a fully integrated approach for automated eco-efficiency assessment of commercial buildings direct from 3D CAD. LCADesign accesses the 3D CAD detail through Industry Foundation Classes (IFCs) - the international standard file format for defining architectural and constructional CAD graphic data as 3D real-world objects - to permit construction professionals to interrogate these intelligent drawing objects for analysis of the performance of a design. The automated take-off provides quantities of all building components whose specific production processes, logistics and raw material inputs, where necessary, are identified to calculate a complete list of quantities for all products such as concrete, steel, timber, plastic etc and combines this information with the life cycle inventory database, to estimate key internationally recognised environmental indicators such as CML, EPS and Eco-indicator 99. This paper outlines the key modules of LCADesign and their role in delivering an automated eco-efficiency assessment for commercial buildings.
Resumo:
Construction projects are faced with a challenge that must not be underestimated. These projects are increasingly becoming highly competitive, more complex, and difficult to manage. They become ‘wicked problems’, which are difficult to solve using traditional approaches. Soft Systems Methodology (SSM) is a systems approach that is used for analysis and problem solving in such complex and messy situations. SSM uses “systems thinking” in a cycle of action research, learning and reflection to help understand the various perceptions that exist in the minds of the different people involved in the situation. This paper examines the benefits of applying SSM to wicked problems in construction project management, especially those situations that are challenging to understand and difficult to act upon. It includes relevant examples of its use in dealing with the confusing situations that incorporate human, organizational and technical aspects.