382 resultados para Computer Modelling
Resumo:
Parametric and generative modelling methods are ways in which computer models are made more flexible, and of formalising domain-specific knowledge. At present, no open standard exists for the interchange of parametric and generative information. The Industry Foundation Classes (IFC) which are an open standard for interoperability in building information models is presented as the base for an open standard in parametric modelling. The advantage of allowing parametric and generative representations are that the early design process can allow for more iteration and changes can be implemented quicker than with traditional models. This paper begins with a formal definition of what constitutes to be parametric and generative modelling methods and then proceeds to describe an open standard in which the interchange of components could be implemented. As an illustrative example of generative design, Frazer’s ‘Reptiles’ project from 1968 is reinterpreted.
Resumo:
Stigmergy is a biological term originally used when discussing insect or swarm behaviour, and describes a model supporting environment-based communication separating artefacts from agents. This phenomenon is demonstrated in the behavior of ants and their food foraging supported by pheromone trails, or similarly termites and their termite nest building process. What is interesting with this mechanism is that highly organized societies are formed without an apparent central management function. We see design features in Web sites that mimic stigmergic mechanisms as part of the User Interface and we have created generalizations of these patterns. Software development and Web site development techniques have evolved significantly over the past 20 years. Recent progress in this area proposes languages to model web applications to facilitate the nuances specific to these developments. These modeling languages provide a suitable framework for building reusable components encapsulating our design patterns of stigmergy. We hypothesize that incorporating stigmergy as a separate feature of a site’s primary function will ultimately lead to enhanced user coordination.
Resumo:
The objective of this PhD research program is to investigate numerical methods for simulating variably-saturated flow and sea water intrusion in coastal aquifers in a high-performance computing environment. The work is divided into three overlapping tasks: to develop an accurate and stable finite volume discretisation and numerical solution strategy for the variably-saturated flow and salt transport equations; to implement the chosen approach in a high performance computing environment that may have multiple GPUs or CPU cores; and to verify and test the implementation. The geological description of aquifers is often complex, with porous materials possessing highly variable properties, that are best described using unstructured meshes. The finite volume method is a popular method for the solution of the conservation laws that describe sea water intrusion, and is well-suited to unstructured meshes. In this work we apply a control volume-finite element (CV-FE) method to an extension of a recently proposed formulation (Kees and Miller, 2002) for variably saturated groundwater flow. The CV-FE method evaluates fluxes at points where material properties and gradients in pressure and concentration are consistently defined, making it both suitable for heterogeneous media and mass conservative. Using the method of lines, the CV-FE discretisation gives a set of differential algebraic equations (DAEs) amenable to solution using higher-order implicit solvers. Heterogeneous computer systems that use a combination of computational hardware such as CPUs and GPUs, are attractive for scientific computing due to the potential advantages offered by GPUs for accelerating data-parallel operations. We present a C++ library that implements data-parallel methods on both CPU and GPUs. The finite volume discretisation is expressed in terms of these data-parallel operations, which gives an efficient implementation of the nonlinear residual function. This makes the implicit solution of the DAE system possible on the GPU, because the inexact Newton-Krylov method used by the implicit time stepping scheme can approximate the action of a matrix on a vector using residual evaluations. We also propose preconditioning strategies that are amenable to GPU implementation, so that all computationally-intensive aspects of the implicit time stepping scheme are implemented on the GPU. Results are presented that demonstrate the efficiency and accuracy of the proposed numeric methods and formulation. The formulation offers excellent conservation of mass, and higher-order temporal integration increases both numeric efficiency and accuracy of the solutions. Flux limiting produces accurate, oscillation-free solutions on coarse meshes, where much finer meshes are required to obtain solutions with equivalent accuracy using upstream weighting. The computational efficiency of the software is investigated using CPUs and GPUs on a high-performance workstation. The GPU version offers considerable speedup over the CPU version, with one GPU giving speedup factor of 3 over the eight-core CPU implementation.
Resumo:
The article focuses on how the information seeker makes decisions about relevance. It will employ a novel decision theory based on quantum probabilities. This direction derives from mounting research within the field of cognitive science showing that decision theory based on quantum probabilities is superior to modelling human judgements than standard probability models [2, 1]. By quantum probabilities, we mean decision event space is modelled as vector space rather than the usual Boolean algebra of sets. In this way,incompatible perspectives around a decision can be modelled leading to an interference term which modifies the law of total probability. The interference term is crucial in modifying the probability judgements made by current probabilistic systems so they align better with human judgement. The goal of this article is thus to model the information seeker user as a decision maker. For this purpose, signal detection models will be sketched which are in principle applicable in a wide variety of information seeking scenarios.
Resumo:
Modelling business processes for analysis or redesign usually requires the collaboration of many stakeholders. These stakeholders may be spread across locations or even companies, making co-located collaboration costly and difficult to organize. Modern process modelling technologies support remote collaboration but lack support for visual cues used in co-located collaboration. Previously we presented a prototype 3D virtual world process modelling tool that supports a number of visual cues to facilitate remote collaborative process model creation and validation. However, the added complexity of having to navigate a virtual environment and using an avatar for communication made the tool difficult to use for novice users. We now present an evolved version of the technology that addresses these issues by providing natural user interfaces for non-verbal communication, navigation and model manipulation.
Resumo:
A demo video showing the BPMVM prototype using several natural user interfaces, such as multi-touch input, full-body tracking and virtual reality.
Resumo:
Drawing on data from the Australian Business Assessment of Computer User Security (ABACUS) survey, this paper examines a range of factors that may influence businesses’ likelihood of being victimised by a computer security incident. It has been suggested that factors including business size, industry sector, level of outsourcing, expenditure on computer security functions and types of computer security tools and/or policies used may influence the probability of particular businesses experiencing such incidents. This paper uses probability modelling to test whether this is the case for the 4,000 businesses that responded to the ABACUS survey. It was found that the industry sector that a business belonged to, and business expenditure on computer security, were not related to businesses’ likelihood of detecting computer security incidents. Instead, the number of employees that a business has and whether computer security functions were outsourced were found to be key indicators of businesses’ likelihood of detecting incidents. Some of the implications of these findings are considered in this paper.
Resumo:
With the widespread of social media websites in the internet, and the huge number of users participating and generating infinite number of contents in these websites, the need for personalisation increases dramatically to become a necessity. One of the major issues in personalisation is building users’ profiles, which depend on many elements; such as the used data, the application domain they aim to serve, the representation method and the construction methodology. Recently, this area of research has been a focus for many researchers, and hence, the proposed methods are increasing very quickly. This survey aims to discuss the available user modelling techniques for social media websites, and to highlight the weakness and strength of these methods and to provide a vision for future work in user modelling in social media websites.
Resumo:
Floods are among the most devastating events that affect primarily tropical, archipelagic countries such as the Philippines. With the current predictions of climate change set to include rising sea levels, intensification of typhoon strength and a general increase in the mean annual precipitation throughout the Philippines, it has become paramount to prepare for the future so that the increased risk of floods on the country does not translate into more economic and human loss. Field work and data gathering was done within the framework of an internship at the former German Technical Cooperation (GTZ) in cooperation with the Local Government Unit of Ormoc City, Leyte, The Philippines, in order to develop a dynamic computer based flood model for the basin of the Pagsangaan River. To this end, different geo-spatial analysis tools such as PCRaster and ArcGIS, hydrological analysis packages and basic engineering techniques were assessed and implemented. The aim was to develop a dynamic flood model and use the development process to determine the required data, availability and impact on the results as case study for flood early warning systems in the Philippines. The hope is that such projects can help to reduce flood risk by including the results of worst case scenario analyses and current climate change predictions into city planning for municipal development, monitoring strategies and early warning systems. The project was developed using a 1D-2D coupled model in SOBEK (Deltares Hydrological modelling software package) and was also used as a case study to analyze and understand the influence of different factors such as land use, schematization, time step size and tidal variation on the flood characteristics. Several sources of relevant satellite data were compared, such as Digital Elevation Models (DEMs) from ASTER and SRTM data, as well as satellite rainfall data from the GIOVANNI server (NASA) and field gauge data. Different methods were used in the attempt to partially calibrate and validate the model to finally simulate and study two Climate Change scenarios based on scenario A1B predictions. It was observed that large areas currently considered not prone to floods will become low flood risk (0.1-1 m water depth). Furthermore, larger sections of the floodplains upstream of the Lilo- an’s Bridge will become moderate flood risk areas (1 - 2 m water depth). The flood hazard maps created for the development of the present project will be presented to the LGU and the model will be used to create a larger set of possible flood prone areas related to rainfall intensity by GTZ’s Local Disaster Risk Management Department and to study possible improvements to the current early warning system and monitoring of the basin section belonging to Ormoc City; recommendations about further enhancement of the geo-hydro-meteorological data to improve the model’s accuracy mainly on areas of interest will also be presented at the LGU.
Resumo:
This paper proposes techniques to improve the performance of i-vector based speaker verification systems when only short utterances are available. Short-length utterance i-vectors vary with speaker, session variations, and the phonetic content of the utterance. Well established methods such as linear discriminant analysis (LDA), source-normalized LDA (SN-LDA) and within-class covariance normalisation (WCCN) exist for compensating the session variation but we have identified the variability introduced by phonetic content due to utterance variation as an additional source of degradation when short-duration utterances are used. To compensate for utterance variations in short i-vector speaker verification systems using cosine similarity scoring (CSS), we have introduced a short utterance variance normalization (SUVN) technique and a short utterance variance (SUV) modelling approach at the i-vector feature level. A combination of SUVN with LDA and SN-LDA is proposed to compensate the session and utterance variations and is shown to provide improvement in performance over the traditional approach of using LDA and/or SN-LDA followed by WCCN. An alternative approach is also introduced using probabilistic linear discriminant analysis (PLDA) approach to directly model the SUV. The combination of SUVN, LDA and SN-LDA followed by SUV PLDA modelling provides an improvement over the baseline PLDA approach. We also show that for this combination of techniques, the utterance variation information needs to be artificially added to full-length i-vectors for PLDA modelling.
Resumo:
Stigmergy is a biological term used when discussing a sub-set of insect swarm-behaviour describing the apparent organisation seen during their activities. Stigmergy describes a communication mechanism based on environment-mediated signals which trigger responses among the insects. This phenomenon is demonstrated in the behavior of ants and their food gathering process when following pheromone trails, where the pheromones are a form of environment-mediated communication. What is interesting with this phenomenon is that highly organized societies are achieved without an apparent management structure. Stigmergy is also observed in human environments, both natural and engineered. It is implicit in the Web where sites provide a virtual environment supporting coordinative contributions. Researchers in varying disciplines appreciate the power of this phenomenon and have studied how to exploit it. As stigmergy becomes more widely researched we see its definition mutate as papers citing original work become referenced themselves. Each paper interprets these works in ways very specific to the research being conducted. Our own research aims to better understand what improves the collaborative function of a Web site when exploiting the phenomenon. However when researching stigmergy to develop our understanding we discover a lack of a standardized and abstract model for the phenomenon. Papers frequently cited the same generic descriptions before becoming intimately focused on formal specifications of an algorithm, or esoteric discussions regarding sub-facets of the topic. None provide a holistic and macro-level view to model and standardize the nomenclature. This paper provides a content analysis of influential literature documenting the numerous theoretical and experimental papers that have focused on stigmergy. We establish that stigmergy is a phenomenon that transcends the insect world and is more than just a metaphor when applied to the human world. We present from our own research our general theory and abstract model of semantics of stigma in stigmergy. We hope our model will clarify the nuances of the phenomenon into a useful road-map, and standardise vocabulary that we witness becoming confused and divergent. Furthermore, this paper documents the analysis on which we base our next paper: Special Theory of Stigmergy: A Design Pattern for Web 2.0 Collaboration.
Resumo:
Many mature term-based or pattern-based approaches have been used in the field of information filtering to generate users’ information needs from a collection of documents. A fundamental assumption for these approaches is that the documents in the collection are all about one topic. However, in reality users’ interests can be diverse and the documents in the collection often involve multiple topics. Topic modelling, such as Latent Dirichlet Allocation (LDA), was proposed to generate statistical models to represent multiple topics in a collection of documents, and this has been widely utilized in the fields of machine learning and information retrieval, etc. But its effectiveness in information filtering has not been so well explored. Patterns are always thought to be more discriminative than single terms for describing documents. However, the enormous amount of discovered patterns hinder them from being effectively and efficiently used in real applications, therefore, selection of the most discriminative and representative patterns from the huge amount of discovered patterns becomes crucial. To deal with the above mentioned limitations and problems, in this paper, a novel information filtering model, Maximum matched Pattern-based Topic Model (MPBTM), is proposed. The main distinctive features of the proposed model include: (1) user information needs are generated in terms of multiple topics; (2) each topic is represented by patterns; (3) patterns are generated from topic models and are organized in terms of their statistical and taxonomic features, and; (4) the most discriminative and representative patterns, called Maximum Matched Patterns, are proposed to estimate the document relevance to the user’s information needs in order to filter out irrelevant documents. Extensive experiments are conducted to evaluate the effectiveness of the proposed model by using the TREC data collection Reuters Corpus Volume 1. The results show that the proposed model significantly outperforms both state-of-the-art term-based models and pattern-based models
Resumo:
Object classification is plagued by the issue of session variation. Session variation describes any variation that makes one instance of an object look different to another, for instance due to pose or illumination variation. Recent work in the challenging task of face verification has shown that session variability modelling provides a mechanism to overcome some of these limitations. However, for computer vision purposes, it has only been applied in the limited setting of face verification. In this paper we propose a local region based intersession variability (ISV) modelling approach, and apply it to challenging real-world data. We propose a region based session variability modelling approach so that local session variations can be modelled, termed Local ISV. We then demonstrate the efficacy of this technique on a challenging real-world fish image database which includes images taken underwater, providing significant real-world session variations. This Local ISV approach provides a relative performance improvement of, on average, 23% on the challenging MOBIO, Multi-PIE and SCface face databases. It also provides a relative performance improvement of 35% on our challenging fish image dataset.
Resumo:
This research looked at using the metaphor of biological evolution as a way of solving architectural design problems. Drawing from fields such as language grammars, algorithms and cellular biology, this thesis looked at ways of encoding design information for processing. The aim of this work is to help in the building of software that support the architectural design process and allow designers to examine more variations.
Resumo:
Security models for two-party authenticated key exchange (AKE) protocols have developed over time to prove the security of AKE protocols even when the adversary learns certain secret values. In this work, we address more granular leakage: partial leakage of long-term secrets of protocol principals, even after the session key is established. We introduce a generic key exchange security model, which can be instantiated allowing bounded or continuous leakage, even when the adversary learns certain ephemeral secrets or session keys. Our model is the strongest known partial-leakage-based security model for key exchange protocols. We propose a generic construction of a two-pass leakage-resilient key exchange protocol that is secure in the proposed model, by introducing a new concept: the leakage-resilient NAXOS trick. We identify a special property for public-key cryptosystems: pair generation indistinguishability, and show how to obtain the leakage-resilient NAXOS trick from a pair generation indistinguishable leakage-resilient public-key cryptosystem.