263 resultados para Carnegie Steel Company.
Resumo:
This paper describes the behaviour of very high strength (VHS) circular steel tubes strengthened by carbon fibre reinforced polymer (CFRP) and subjected to axial tension. A series of tests were conducted with different bond lengths and number of layers. The distribution of strain through the thickness of CFRP layers and along CFRP bond length was studied. The strain was found to generally decrease along the CFRP bond length far from the joint. The strain through the thickness of the CFRP layers was also found to decrease from bottom to top layer. The effective bond length for high modulus CFRP was established. Finally empirical models were developed to estimate the maximum load for a given CFRP arrangement.
Resumo:
This article argues that Chinese traditional values do matter in Chinese corporate governance. The object is to report on the preliminary findings of a project supported by the General Research Fund in Hong Kong (HK). Thus far the survey results from HK respondents support the authors’ hypothesis. As such, traditional Chinese values should be on the agenda of the next round of company law reforms in China
Resumo:
For almost a decade before Hollywood existed, French firm Pathe towered over the early film industry with estimates of its share of all films sold around the world varying between 50-70%. Pathe was the first global entertainment company. This paper analyses its rise to market leadership by applying a theoretical framework drawn from the business literature on causes of industry dominance, which provides insights into how firms acquire and maintain market dominance and in this case the film industry. This paper uses evidence presented by film historians to argue that Pathe "fits" the expected theoretical model of a dominant firm because it had a marketing orientation, used an effective quality-based competitive strategy and possessed the six critical marketing capabilities that business research shows enable the best performing firms to consistently outperform rivals.
Resumo:
ABSTRACT Twelve beam-to-column connections between cold-formed steel sections consisting of three beam depths and four connection types were tested in isolation to investigate their behavior based on strength, stiffness and ductility. Resulting moment-rotation curves indicate that the tested connections are efficient moment connections where moment capacities ranged from about 65% to 100% of the connected beam capac-ity. With a moment capacity of greater than 80% of connected beam member capacity, some of the connec-tions can be regarded as full strength connections. Connections also possessed sufficient ductility with rota-tions of 20 mRad at failure although some connections were too ductile with rotations in excess of 30 mRad. Generally, most of the connections possess the strength and ductility to be considered as partial strength con-nections. The ultimate failures of almost all of the connections were due to local buckling of the compression web and flange elements of the beam closest to the connection.
Resumo:
When managers of entrepreneurial companies typically talk about strategies, they first consider what products to make and secondly where to locate the business. The entrepreneurial companies locate in rural areas because of a wish to maintain a certain lifestyle, or because they can combine a resource available there with certain knowledge or interest that they have (Getz and Nilsson, 2004). In addition, many managers of entrepreneurial companies are confident in locating in a rural area, because there often is economic and social structure supportive of local corporate governance. The most central part of corporate governance is the board of directors. In an entrepreneurial company in a rural area, such members of boards are most likely to be individuals in dominant positions influential in the local economy.
Resumo:
Different from conventional methods for structural reliability evaluation, such as, first/second-order reliability methods (FORM/SORM) or Monte Carlo simulation based on corresponding limit state functions, a novel approach based on dynamic objective oriented Bayesian network (DOOBN) for prediction of structural reliability of a steel bridge element has been proposed in this paper. The DOOBN approach can effectively model the deterioration processes of a steel bridge element and predict their structural reliability over time. This approach is also able to achieve Bayesian updating with observed information from measurements, monitoring and visual inspection. Moreover, the computational capacity embedded in the approach can be used to facilitate integrated management and maintenance optimization in a bridge system. A steel bridge girder is used to validate the proposed approach. The predicted results are compared with those evaluated by FORM method.
Resumo:
Sandwich components have emerged as light weight, efficient, economical, recyclable and reusable building systems which provide an alternative to both stiffened steel and reinforced concrete. These components are made of composite materials in which two metal face plates or Glassfibre Reinforced Cement (GRC) layers are bonded and form a sandwich with light weight compact polyurethane (PU) elastomer core. Existing examples of product applications are light weight sandwich panels for walls and roofs, Sandwich Plate System (SPS) for stadia, arena terraces, naval construction and bridges and Domeshell structures for dome type structures. Limited research has been conducted to investigate performance characteristics and applicability of sandwich or hybrid materials as structural flooring systems. Performance characteristics of Hybrid Floor Plate Systems comprising GRC, PU and Steel have not been adequately investigated and quantified. Therefore there is very little knowledge and design guidance for their application in commercial and residential buildings. This research investigates performance characteristics steel, PU and GRC in Hybrid Floor Plate Systems (HFPS) and develops a new floor system with appropriate design guide lines.
Resumo:
When crest-fixed thin trapezoidal steel cladding with closely spaced ribs is subjected to wind uplift/suction forces, local dimpling or pull-through failures occur prematurely at their screw connections because of the large stress concentrations in the cladding under the screw heads. Currently, the design of crest-fixed profiled steel cladding is mainly based on time consuming and expensive laboratory tests due to the lack of adequate design rules. In this research, a shell finite element model of crest-fixed trapezoidal steel cladding with closely spaced ribs was developed and validated using experimental results. The finite element model included a recently developed splitting criterion and other advanced features including geometric imperfections, buckling effects, contact modelling and hyperelastic behaviour of neoprene washers, and was used in a detailed parametric study to develop suitable design formulae for local failures. This paper presents the details of the finite element analyses, large scale experiments and their results including the new wind uplift design strength formulae for trapezoidal steel cladding with closely spaced ribs. The new design formulae can be used to achieve both safe and optimised solutions.
Small, Medium, Large: Theatre Companies and Issues of Scale - A Case Study of a Medium-Sized Company
Resumo:
'Surviving but not thriving.' Tbat is the message about small to mediumsized companies that Ian McRae, Chair ofthe Theatre Board of the Australia Council, has been delivering since 2003. In the Theatre Board Assessment Meeting Report of 2007, McRae strongly urged renewed financial support for this most important sector given the significant decrease over the last 10 years and the consequent decrease in new Australian works being produced. Without such support his prediction is that'considerable damage could be done to the creative infrastructure across Australia resulting in a loss of artistic vibrancy down the track that could be very difficult to recover' (McRae, 2007:3).
Resumo:
Fire safety design of building structures has received greater attention in recent times due to continuing loss of properties and lives during fires. However, fire performance of light gauge cold-formed steel structures is not well understood despite its increased usage in buildings. Cold-formed steel compression members are susceptible to various buckling modes such as local and distortional buckling and their ultimate strength behaviour is governed by these buckling modes. Therefore a research project based on experimental and numerical studies was undertaken to investigate the distortional buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. Lipped channel sections with and without additional lips were selected with three thicknesses of 0.6, 0.8, and 0.95 mm and both low and high strength steels (G250 and G550 steels). More than 150 compression tests were undertaken first at ambient and elevated temperatures. Finite element models of the tested compression members were then developed by including the degradation of mechanical properties with increasing temperatures. Comparison of finite element analysis and experimental results showed that the developed finite element models were capable of simulating the distortional buckling and strength behaviour at ambient and elevated temperatures up to 800 °C. The validated model was used to determine the effects of mechanical properties, geometric imperfections and residual stresses on the distortional buckling behaviour and strength of cold-formed steel columns. This paper presents the details of the numerical study and the results. It demonstrated the importance of using accurate mechanical properties at elevated temperatures in order to obtain reliable strength characteristics of cold-formed steel columns under fire conditions.
Resumo:
This article examines one of the changes implemented in the Corporations Amendment (Insolvency) Act 2007 (Cth) . It is argued that the insertion of s 444DA raises some matters that go to the nature of the insolvency process generally and the operation of Pt 5.3A in a particular. The position of employees in insolvency is a matter that is the subject of much comment from a policy perspective. This article does not cover that debate but provides some initial explanation of the need to protect employees. The second part of the article covers the particular background to the voluntary administration system as far as employee rights are concerned as well as the arguments put forward by the government to justify the change in the legislation which inserted s 444DA . It suggests that there was little evidence provided for the need to protect employee priority rights in this particular way. An alternative explanation is given for the change adopted by the government. The third part of the article suggests that the manner in which the legislation seeks to better protect employee creditors is somewhat clumsy in its operation. It raises a number of questions about how the legislation may operate and argues that given the stated aims, some alteration to it would improve its effectiveness.
Resumo:
For almost a decade before Hollywood existed, French firm Pathe towered over the early film industry with estimates of its share of all films sold around the world varying between 50-70%. Pathe was the first global entertainment company. This paper analyses its rise to market leadership by applying a theoretical framework drawn from the business literature on causes of industry dominance, which provides insights into how firms acquire and maintain market dominance, and in this case the film industry. This paper uses evidence presented by film historians to argue that Pathe “fits” the expected theoretical model of a dominant firm because it had a marketing orientation, used an effective quality-based competitive strategy and possessed the six critical strategic marketing capabilities that business research shows enable the best performing firms to consistently outperform rivals
Resumo:
This paper describes a series of double strap shear tests loaded in tension to investigate the bond between CFRP sheets and steel plates. Both normal modulus (240 GPa) and high modulus (640 GPa) CFRPs were used in the test program. Strain gauges were mounted to capture the strain distribution along the CFRP length. Different failure modes were observed for joints with normal modulus CFRP and those with high modulus CFRP. The strain distribution along the CFRP length was found to be similar for the two cases. A shorter effective bond length was obtained for joints with high modulus CFRP whereas larger ultimate load carrying capacity can be achieved for joints with normal modulus CFRP when the bond length is long enough. The Hart-Smith Model was modified to predict the effective bond length and ultimate load carrying capacity of joints between the normal modulus CFRP and steel plates. The Multilayer Distribution Model developed by the authors was modified to predict the load carrying capacity of joints between the high modulus CFRP and steel plates. The predicted values agreed well with experimental ones.
Resumo:
Strengthening of steel structures using externally-bonded carbon fibre reinforced polymers ‘CFRP’ is a rapidly developing technique. This paper describes the behaviour of axially loaded flat steel plates strengthened using carbon fibre reinforced polymer sheets. Two steel plates were joined together with adhesive and followed by the application of carbon fibre sheet double strap joint with different bond lengths. The behaviour of the specimens was further investigated by using nonlinear finite element analysis to predict the failure modes and load capacity. In this study, bond failure is the dominant failure mode for normal modulus (240 GPa) CFRP bonding which closely matched the results of finite elements. The predicted ultimate loads from the FE analysis are found to be in good agreement with experimental values.