122 resultados para Back scattering
Resumo:
Flood waters came rushing back into Grantham over the weekend, two years after their community was devastated. It was too much for many residents, writes journalist Amanda Gearing from Grantham.
Resumo:
Research Statement from dancer: "This research is situated within my ongoing praxis, which explores the dancer’s role within the production of contemporary choreography through an elucidation of the first person perspective. This was a collaborative investigation with a group of artists and my specific research question focused upon the autopoietic unfolding of choreography and how the dancer is situated within this... " Research statement from choreographer: "This research is situated in the field of practice-led research, investigating choreographic practice. ‘The choreographic processes of many twentieth-century dance pioneers and innovators have been documented (Carter & O’Shea 2010; Foster 2010). In stark contrast, although seemingly primary to the act of choreography, the dancers’ experiences of the choreographic process have not been explored fully’ (Risner 2000, 156). The stock of choreographic literature is biased toward the choreographer-genius and the creative product (Penty 1998) and overlooks the dancer’s voice in the creative process (Risner 1992)..."
Resumo:
Recently, mean-variance analysis has been proposed as a novel paradigm to model document ranking in Information Retrieval. The main merit of this approach is that it diversifies the ranking of retrieved documents. In its original formulation, the strategy considers both the mean of relevance estimates of retrieved documents and their variance. How- ever, when this strategy has been empirically instantiated, the concepts of mean and variance are discarded in favour of a point-wise estimation of relevance (to replace the mean) and of a parameter to be tuned or, alternatively, a quantity dependent upon the document length (to replace the variance). In this paper we revisit this ranking strategy by going back to its roots: mean and variance. For each retrieved document, we infer a relevance distribution from a series of point-wise relevance estimations provided by a number of different systems. This is used to compute the mean and the variance of document relevance estimates. On the TREC Clueweb collection, we show that this approach improves the retrieval performances. This development could lead to new strategies to address the fusion of relevance estimates provided by different systems.
Resumo:
We always seem to hear about those dancers who are successful, but how do you cope when you don't get what you want? In life, we are often faced with situations where things don’t quite go to plan. We might not get the job we wanted, the grade we expected, the grant we applied for, or that long-dreamed of opportunity. What we make of these experiences shapes how we respond in the future to similar events...
Resumo:
Dynamic light scattering (DLS) has become a primary nanoparticle characterization technique with applications from materials characterization to biological and environmental detection. With the expansion in DLS use from homogeneous spheres to more complicated nanostructures, comes a decrease in accuracy. Much research has been performed to develop different diffusion models that account for the vastly different structures but little attention has been given to the effect on the light scattering properties in relation to DLS. In this work, small (core size < 5 nm) core-shell nanoparticles were used as a case study to measure the capping thickness of a layer of dodecanethiol (DDT) on Au and ZnO nanoparticles by DLS. We find that the DDT shell has very little effect on the scattering properties of the inorganic core and hence can be ignored to a first approximation. However, this results in conventional DLS analysis overestimating the hydrodynamic size in the volume and number weighted distributions. By introducing a simple correction formula that more accurately yields hydrodynamic size distributions a more precise determination of the molecular shell thickness is obtained. With this correction, the measured thickness of the DDT shell was found to be 7.3 ± 0.3 Å, much less than the extended chain length of 16 Å. This organic layer thickness suggests that on small nanoparticles, the DDT monolayer adopts a compact disordered structure rather than an open ordered structure on both ZnO and Au nanoparticle surfaces. These observations are in agreement with published molecular dynamics results.
Resumo:
The objective of this research was to develop a model to estimate future freeway pavement construction costs in Henan Province, China. A comprehensive set of factors contributing to the cost of freeway pavement construction were included in the model formulation. These factors comprehensively reflect the characteristics of region and topography and altitude variation, the cost of labour, material, and equipment, and time-related variables such as index numbers of labour prices, material prices and equipment prices. An Artificial Neural Network model using the Back-Propagation learning algorithm was developed to estimate the cost of freeway pavement construction. A total of 88 valid freeway cases were obtained from freeway construction projects let by the Henan Transportation Department during the period 1994−2007. Data from a random selection of 81 freeway cases were used to train the Neural Network model and the remaining data were used to test the performance of the Neural Network model. The tested model was used to predict freeway pavement construction costs in 2010 based on predictions of input values. In addition, this paper provides a suggested correction for the prediction of the value for the future freeway pavement construction costs. Since the change in future freeway pavement construction cost is affected by many factors, the predictions obtained by the proposed method, and therefore the model, will need to be tested once actual data are obtained.
Resumo:
Nuclei and electrons in condensed matter and/or molecules are usually entangled, due to the prevailing (mainly electromagnetic) interactions. However, the "environment" of a microscopic scattering system (e.g. a proton) causes ultrafast decoherence, thus making atomic and/or nuclear entanglement e®ects not directly accessible to experiments. However, our neutron Compton scattering experiments from protons (H-atoms) in condensed systems and molecules have a characteristic collisional time about 100|1000 attoseconds. The quantum dynamics of an atom in this ultrashort, but ¯nite, time window is governed by non-unitary time evolution due to the aforementioned decoherence. Unexpectedly, recent theoretical investigations have shown that decoherence can also have the following energetic consequences. Disentangling two subsystems A and B of a quantum system AB is tantamount to erasure of quantum phase relations between A and B. This erasure is widely believed to be an innocuous process, which e.g. does not a®ect the energies of A and B. However, two independent groups proved recently that disentangling two systems, within a su±ciently short time interval, causes increase of their energies. This is also derivable by the simplest Lindblad-type master equation of one particle being subject to pure decoherence. Our neutron-proton scattering experiments with H2 molecules provide for the first time experimental evidence of this e®ect. Our results reveal that the neutron-proton collision, leading to the cleavage of the H-H bond in the attosecond timescale, is accompanied by larger energy transfer (by about 2|3%) than conventional theory predicts. Preliminary results from current investigations show qualitatively the same e®ect in the neutron-deuteron Compton scattering from D2 molecules. We interpret the experimental findings by treating the neutron-proton (or neutron-deuteron) collisional system as an entangled open quantum system being subject to fast decoherence caused by its "environment" (i.e., two electrons plus second nucleus of H2 or D2). The presented results seem to be of generic nature, and may have considerable consequences for various processes in condensed matter and molecules, e.g. in elementary chemical reactions.
Resumo:
Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD4, in four bituminous coals in the range of pore sizes between ∼10 Å and ∼5 μm. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD4, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD4 varied from ∼13 to ∼36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO2 and CD4 were conducted as a function of the pressure in the range of 1−400 bar. The neutron scattering intensity from small pores with radii less than 35 Å in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO2 and supercritical methane in small pores.
Resumo:
The Comment by Mayers and Reiter criticizes our work on two counts. Firstly, it is claimed that the quantum decoherence effects that we report in consequence of our experimental analysis of neutron Compton scattering from H in gaseous H2 are not, as we maintain, outside the framework of conventional neutron scatteringtheory. Secondly, it is claimed that we did not really observe such effects, owing to a faulty analysis of the experimental data, which are claimed to be in agreement with conventional theory. We focus in this response on the critical issue of the reliability of our experimental results and analysis. Using the same standard Vesuvio instrument programs used by Mayers et al., we show that, if the experimental results for H in gaseous H2 are in agreement with conventional theory, then those for D in gaseous D2 obtained in the same way cannot be, and vice-versa. We expose a flaw in the calibration methodology used by Mayers et al. that leads to the present disagreement over the behaviour of H, namely the ad hoc adjustment of the measured H peak positions in TOF during the calibration of Vesuvio so that agreement is obtained with the expectation of conventional theory. We briefly address the question of the necessity to apply the theory of open quantum systems.
Resumo:
Decoherence of quantum entangled particles is observed in most systems, and is usually caused by system-environment interactions. Disentangling two subsystems A and B of a quantum systemAB is tantamount to erasure of quantum phase relations between A and B. It is widely believed that this erasure is an innocuous process, which e.g. does not affect the energies of A and B. Surprisingly, recent theoretical investigations by different groups showed that disentangling two systems, i.e. their decoherence, can cause an increase of their energies. Applying this result to the context of neutronCompton scattering from H2 molecules, we provide for the first time experimental evidence which supports this prediction. The results reveal that the neutron-proton collision leading to the cleavage of the H-H bond in the sub-femtosecond timescale is accompanied by larger energy transfer (by about 3%) than conventional theory predicts. It is proposed to interpreted the results by considering the neutron-proton collisional system as an entangled open quantum system being subject to decoherence owing to the interactions with the “environment” (i.e., two electrons plus second proton of H2).
Resumo:
Time- and position-resolved synchrotron small angle X-ray scattering data were acquired from samples of two Australian coal seams: Bulli seam (Bulli 4, Ro=1.42%, Sydney Basin), which naturally contains CO2 and Baralaba seam (Ro=0.67%, Bowen Basin), a potential candidate for sequestering CO2. This experimental approach has provided unique, pore-size-specific insights into the kinetics of CO2 sorption in the micro- and small mesopores (diameter 5 to 175 Å) and the density of the sorbed CO2 at reservoir-like conditions of temperature and hydrostatic pressure. For both samples, at pressures above 5 bar, the density of CO2 confined in pores was found to be uniform, with no densification in near-wall regions. In the Bulli 4 sample, CO2 first flooded the slit pores between polyaromatic sheets. In the pore-size range analysed, the confined CO2 density was close to that of the free CO2. The kinetics data are too noisy for reliable quantitative analysis, but qualitatively indicate faster kinetics in mineral-matter-rich regions. In the Baralaba sample, CO2 preferentially invaded the smallest micropores and the confined CO2 density was up to five times that of the free CO2. Faster CO2 sorption kinetics was found to be correlated with higher mineral matter content but, the mineral-matter-rich regions had lower-density CO2 confined in their pores. Remarkably, the kinetics was pore-size dependent, being faster for smaller pores. These results suggest that injection into the permeable section of an interbedded coal-clastic sequence could provide a viable combination of reasonable injectivity and high sorption capacity.
Resumo:
The ABC’s major arts announcement this month appears at first glance to be good news for one of its core constituencies. The national broadcaster will establish an Arts Council and will roll out several new arts programming initiatives. The Corporation’s relationship with the arts community has been strained in recent years, so the new programming initiatives should be greeted positively. But without significant new funding, coupled with the uncertainties of a looming federal budget, some commentators are seeing this as little more than a shuffling of the deckchairs.
Resumo:
The importance of the first year experience (FYE) to success at university has been a focus of attention in the Australian higher education sector since the 1990s. For students a successful transition into university during their first year is now regarded as crucial for student engagement, success and retention. In this review we summarise a decade of research into FYE in the Australasian context. We draw on the findings arising from this comprehensive review of FYE programs and practices to describe FYE trends through the dual lenses of the first year curriculum principles and the generational approach to FYE initiatives. We contend that the generational approach to conceptualising the FYE and first year student engagement has made a useful but limited contribution to our understanding of the first year experience. Acknowledging the criticality of student engagement in a successful FYE, we propose an alternative— the Student Engagement Success and Retention Maturity Model (SESR-MM)— as a sophisticated vehicle for achieving whole-of-institution approaches to the FYE. The SESR-MM embodies the aspirations and characteristics of the transition pedagogy, highlights the need for institutional level evaluation of the FYE, focuses attention on the capacity of institutions to mobilise for first year student engagement, and importantly builds on the generational approach to allow an assessment of institutional capacity to initiate, plan, manage, evaluate and review institutional FYE practices.
Resumo:
Many research and development projects that are carried out by firms and research institutes are technology-oriented. There is a large gap between research results, for instance in the form of prototypes, and the actual service offerings to customers. This becomes problematic when an organization wants to bring the results from such a project to the market, which will be particularly troublesome when the research results do not readily fit traditional offerings, roles and capabilities in the industry, nor the financial arrangements. In this chapter, we discuss the design of a business model for a mobile health service, starting with a research prototype that was developed for patients with chronic lower back pain, using the STOF model and method. In a number of design sessions, an initial business model was developed that identifies critical design issues that play a role in moving from prototype toward market deployment. The business model serves as a starting-point to identify and commit relevant stakeholders, and to draw up a business plan and case. This chapter is structured as follows. We begin by discussing the need for mobile health business models. Next, the research and development project on mobile health and the prototype for chronic lower back pain patients are introduced, after which the approach used to develop the business model is described, followed by a discussion of the developed mobile health business model for each of the STOF domains. We conclude with a discussion regarding the lessons that were learned with respect to the development of a business model on the basis of a prototype.
Resumo:
Palladium is sputtered on multi-walled carbon nanotube forests to form carbon-metal core-shell nanowire arrays. These hybrid nanostructures exhibited resistive responses when exposed to hydrogen with an excellent baseline recovery at room temperature. The magnitude of the response is shown to be tuneable by an applied voltage. Unlike the charge-transfer mechanism commonly attributed to Pd nanoparticle-decorated carbon nanotubes, this demonstrates that the hydrogen response mechanism of the multi-walled carbon nanotube-Pd core-shell nanostructure is due to the increase in electron scattering induced by physisorption of hydrogen. These hybrid core-shell nanostructures are promising for gas detection in hydrogen storage applications.