108 resultados para B-191
Resumo:
A copolymer comprising 1,4-diketopyrrolo[3,4-c]pyrrole (DPP) and thieno[3,2-b]thiophene moieties, PDBT-co-TT, shows high hole mobility of up to 0.94 cm2 V-1 s-1 in organic thin-film transistors. The strong intermolecular interactions originated from π-π stacking and donor-acceptor interaction lead to the formation of interconnected polymer networks having an ordered lamellar structure, which have established highly efficient pathways for charge carrier transport.
Resumo:
A new diketopyrrolopyrrole (DPP)-containing donor-acceptor polymer, poly(2,5-bis(2-octyldodecyl)-3,6-di(furan-2-yl)-2,5-dihydro-pyrrolo[3,4-c] pyrrole-1,4-dione-co-thieno[3,2-b]thiophene) (PDBF-co-TT), is synthesized and studied as a semiconductor in organic thin film transistors (OTFTs) and organic photovoltaics (OPVs). High hole mobility of up to 0.53 cm 2 V -1 s -1 in bottom-gate, top-contact OTFT devices is achieved owing to the ordered polymer chain packing and favoured chain orientation, strong intermolecular interactions, as well as uniform film morphology of PDBF-co-TT. The optimum band gap of 1.39 eV and high hole mobility make this polymer a promising donor semiconductor for the solar cell application. When paired with a fullerene acceptor, PC 71BM, the resulting OPV devices show a high power conversion efficiency of up to 4.38% under simulated standard AM1.5 solar illumination.
Resumo:
4-Hexylbithienopyridine has been prepared as a novel electron-accepting monomer for conjugated polymers. To test its electronic properties, alternating copolymers with fluorene and indenofluorene polymers have been prepared. The copolymers displayed reduction potentials about 0.5 V lower than for the corresponding fluorene and indenofluorene homopolymers, indicating much improved electron-accepting properties. Analysis of the microscopic morphology of thin films of the copolymers by AFM shows that they lack the extensive supramolecular order seen with the homopolymers, which is attributed to the bithienopyridine units disrupting the π-stacking. LEDs using these polymers as the emitting layer produce blue-green emission with low turn-on voltages with aluminum electrodes confirming their improved electron affinity. The indenofluorene copolymer displayed an irreversible red shift in emission at high voltages, which is attributed to oxidation of the indenofluorene units. This red shift occurred at higher potentials than for indenofluorene homopolymers in LEDs, suggesting that the heterocyclic moieties offer some protection against electrically promoted oxidation.
Resumo:
Chemical investigations of the Australian marine sponge Ecionemia geodides resulted in the isolation of two new pyridoacridine alkaloids, ecionines A (1) and B (2), along with the previously isolated marine natural products, biemnadin (3) and meridine (4). Compounds 1 and 2 both contain an imine moiety, which is rare for the pyridoacridine structure class. The chemical structures of 1 and 2 were determined by extensive 1D and 2D NMR and MS data analyses. All compounds were tested against a panel of human bladder cancer cell lines, the increasingly metastatic TSU-Pr1 series (TSU-Pr1, TSU-Pr1-B1 and TSU-Pr1- B2) and the superficial bladder cancer cell line 5637. Ecionine A (1) displayed cytotoxicity against all cell lines, with IC50 values ranging from 3 to 7 mM. This is the first report of chemistry from the sponge genus Ecionemia.
Resumo:
This thesis examined the ability to predict the emergence of bacteria resistant to antibiotics using genetic markers in the bacteria. Bacteria containing the genetic markers were able to become resistant to antibiotics, whereas bacteria that did not have the genetic markers remained susceptible. Existing techniques can identify the presence of resistance by looking at the characteristics of the bacteria during growth. However, having the ability to predict antibiotic resistance before it emerges could improve the preservation of currently available antibiotics and minimise treatment failure.
Resumo:
Ascidians are marine invertebrates that have been a source of numerous cytotoxic compounds. Of the first six marine-derived drugs that made anticancer clinical trials, three originated from ascidian specimens. In order to identify new anti-neoplastic compounds, an ascidian extract library (143 samples) was generated and screened in MDA-MB-231 breast cancer cells using a real-time cell analyzer (RTCA). This resulted in 143 time-dependent cell response profiles (TCRP), which are read-outs of changes to the growth rate, morphology, and adhesive characteristics of the cell culture. Twenty-one extracts affected the TCRP of MDA-MB-231 cells and were further investigated regarding toxicity and specificity, as well as their effects on cell morphology and cell cycle. The results of these studies were used to prioritize extracts for bioassay-guided fractionation, which led to the isolation of the previously identified marine natural product, eusynstyelamide B (1). This bis-indole alkaloid was shown to display an IC50 of 5 μM in MDA-MB-231 cells. Moreover, 1 caused a strong cell cycle arrest in G2/M and induced apoptosis after 72 h treatment, making this molecule an attractive candidate for further mechanism of action studies.
Resumo:
BACKGROUND: The use of nonstandardized N-terminal pro-B-type natriuretic peptide (NT-proBNP) assays can contribute to the misdiagnosis of heart failure (HF). Moreover, there is yet to be established a common consensus regarding the circulating forms of NT-proBNP being used in current assays. We aimed to characterize and quantify the various forms of NT-proBNP in the circulation of HF patients. METHODS: Plasma samples were collected from HF patients (n = 20) at rest and stored at -80 degrees C. NT-proBNP was enriched from HF patient plasma by use of immunoprecipitation followed by mass spectrometric analysis. Customized homogeneous sandwich AlphaLISA (R) immunoassays were developed and validated to quantify 6 fragments of NT-proBNP. RESULTS: Mass spectrometry identified the presence of several N- and C-terminally processed forms of circulating NT-proBNP, with physiological proteolysis between Pro2-Leu3, Leu3-Gly4, Pro6-Gly7, and Pro75-Arg76. Consistent with this result, AlphaLISA immunoassays demonstrated that antibodies targeting the extreme N or C termini measured a low apparent concentration of circulating NT-proBNP. The apparent circulating NT-proBNP concentration was increased with antibodies targeting nonglycosylated and nonterminal epitopes (P < 0.05). CONCLUSIONS: In plasma collected from HF patients, immunoreactive NT-proBNP was present as multiple N- and C-terminally truncated fragments of the full length NT-proBNP molecule. Immunodetection of NT-proBNP was significantly improved with the use of antibodies that did not target these terminal regions. These findings support the development of a next generation NT-proBNP assay targeting nonterminal epitopes as well as avoiding the central glycosylated region of this molecule. (c) 2013 American Association for Clinical Chemistry
Resumo:
Background MicroRNAs (miRNAs) are known to play an important role in cancer development by post-transcriptionally affecting the expression of critical genes. The aims of this study were two-fold: (i) to develop a robust method to isolate miRNAs from small volumes of saliva and (ii) to develop a panel of saliva-based diagnostic biomarkers for the detection of head and neck squamous cell carcinoma (HNSCC). Methods Five differentially expressed miRNAs were selected from miScript™ miRNA microarray data generated using saliva from five HNSCC patients and five healthy controls. Their differential expression was subsequently confirmed by RT-qPCR using saliva samples from healthy controls (n = 56) and HNSCC patients (n = 56). These samples were divided into two different cohorts, i.e., a first confirmatory cohort (n = 21) and a second independent validation cohort (n = 35), to narrow down the miRNA diagnostic panel to three miRNAs: miR-9, miR-134 and miR-191. This diagnostic panel was independently validated using HNSCC miRNA expression data from The Cancer Genome Atlas (TCGA), encompassing 334 tumours and 39 adjacent normal tissues. Receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic capacity of the panel. Results On average 60 ng/μL miRNA was isolated from 200 μL of saliva. Overall a good correlation was observed between the microarray data and the RT-qPCR data. We found that miR-9 (P <0.0001), miR-134 (P <0.0001) and miR-191 (P <0.001) were differentially expressed between saliva from HNSCC patients and healthy controls, and that these miRNAs provided a good discriminative capacity with area under the curve (AUC) values of 0.85 (P <0.0001), 0.74 (P < 0.001) and 0.98 (P < 0.0001), respectively. In addition, we found that the salivary miRNA data showed a good correlation with the TCGA miRNA data, thereby providing an independent validation. Conclusions We show that we have developed a reliable method to isolate miRNAs from small volumes of saliva, and that the saliva-derived miRNAs miR-9, miR-134 and miR-191 may serve as novel biomarkers to reliably detect HNSCC. © 2014 International Society for Cellular Oncology.
Resumo:
Exposure to ultraviolet radiation is closely linked to the development of skin cancers in humans. The ultraviolet B (UVB) radiation wavelength (280-320 nm), in particular, causes DNA damage in epidermal keratinocytes, which are linked to the generation of signature premalignant mutations. Interactions between dermal fibroblasts and keratinocytes play a role in epidermal repair and regeneration after UVB-induced damage. To investigate these processes, established two and three-dimensional culture models were utilized to study the impact of fibroblast-keratinocyte crosstalk during the acute UVB response. Using a coculture system it was observed that fibroblasts enhanced keratinocyte survival and the repair of cyclobutane pyrimidine dimers (CPDs) after UVB radiation exposure. These findings were also mirrored in irradiated human skin coculture models employed in this study. Fibroblast coculture was shown to play a role in the expression and activation of members of the apoptotic cascade, including caspase-3 and Bad. Interestingly, the expression and phosphorylation of p53, a key player in the regulation of keratinocyte cell fate postirradiation, was also shown to be influenced by fibroblast-produced factors. This study highlights the importance of synergistic interactions between fibroblasts and keratinocytes in maintaining a functional epidermis while promoting repair and regeneration following UVB radiation-induced damage.
Resumo:
Many governments in western democracies conduct the work of leading their societies forward through policy generation and implementation. Despite government attempts at extensive negotiation, collaboration and debate, the general populace in these same countries frequently express feelings of disempowerment and undue pressure to be compliant, often leading to disengagement. Here we outline Plan B: a process for examining how policies that emerge from good intentions are frequently interpreted as burdensome or irrelevant by those on whom they have an impact. Using a case study of professional standards for teachers in Australia, we describe how we distilled Foucault’s notions of archaeology into a research approach centring on the creation of ‘polyhedrons of intelligibility’ as an alternative approach by which both policy makers and those affected by their policies may understand how their respective causes are supported and adversely affected.
Resumo:
This is a comprehensive study of human kidney proximal tubular epithelial cells (PTEC) which are known to respond to and mediate the pathological process of a range of kidney diseases. It identifies various molecules expressed by PTEC and how these molecules participate in down-regulating the inflammatory process, thereby highlighting the clinical potential of these molecules to treat various kidney diseases. In the disease state, PTEC gain the ability to regulate the immune cell responses present within the interstitium. This down-regulation is a complex interaction of contact dependent/independent mechanisms involving various immuno-regulatory molecules including PD-L1, sHLA-G and IDO. The overall outcome of this down-regulation is suppressed DC maturation, decreased number of antibody producing B cells and low T cell responses. These manifestations within a clinical setting are expected to dampen the ongoing inflammation, preventing the damage caused to the kidney tissue.
Resumo:
Introduction Sphingosine-1-phosphate receptor 1 (S1P1) is crucial for regulation of immunity and bone metabolism. This study aimed to investigate the expression of S1P1 in rat periapical lesions and its relationship with receptor activator of nuclear factor kappa B ligand (RANKL) and regulatory T (Treg) cells. Methods Periapical lesions were induced by pulp exposure in the first lower molars of 55 Wistar rats. Thirty rats were killed on days 0, 7, 14, 21, 28, and 35, and their mandibles were harvested for x-ray imaging, micro–computed tomography scanning, histologic observation, immunohistochemistry, enzyme histochemistry, and double immunofluorescence analysis. The remaining 25 rats were killed on days 0, 14, 21, 28, and 35, and mandibles were harvested for flow cytometry. Results The volume and area of the periapical lesions increased from day 0 to day 21 and then remained comparably stable after day 28. S1P1-positive cells were observed in the inflammatory periapical regions; the number of S1P1-positive cells peaked at day 14 and then decreased from day 21 to day 35. The distribution of S1P1-positive cells was positively correlated with the dynamics of RANKL-positive cells but was negatively correlated with that of Treg cells. Conclusions S1P1 expression was differentially correlated with RANKL and Treg cell infiltration in the periapical lesions and is therefore a contributing factor to the pathogenesis of such lesions.
Resumo:
This thesis investigated how enzymes called phosphodiesterases control changes in contractility mediated by noradrenaline and adrenaline through activation of β1- and β2-adrenoceptors in live human heart tissue from patients with advanced heart failure undergoing transplantation. The study compared patients who had been administered β-blocker medicines metoprolol or carvedilol or no β-blocker treatment. This work helped to further elucidate the complex roles of target receptors and enzymes that are integral to the progression of heart failure, to compare the mechanisms of action of β-blockers currently used to manage heart failure and to identify new drug targets for heart failure treatment.
Resumo:
Phylogeographic patterns and population structure of the pelagic Indian mackerel, Rastrelliger kanagurta were examined in 23 populations collected from the Indonesian-Malaysian Archipelago (IMA) and the West Indian Ocean (WIO). Despite the vast expanse of the IMA and neighbouring seas, no evidence for geographical structure was evident. An indication that R. kanagurta populations across this region are essentially panmictic. This study also revealed that historical isolation was insufficient for R. kanagurta to attain migration drift equilibrium. Two distinct subpopulations were detected between the WIO and the IMA (and adjacent populations); interpopulation genetic variation was high. A plausible explanation for the genetic differentiation observed between the IMA and WIO regions suggest historical isolation as a result of fluctuations in sea levels during the late Pleistocene. This occurrence resulted in the evolution of a phylogeographic break for this species to the north of the Andaman Sea.