281 resultados para Automatic classification


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years the air transport industry has experienced unprecedented growth, driven by strong local and global economies. Whether this growth can continue in the face of anticipated oil crises; international economic forecasts and recent influenza outbreaks is yet to be seen. One thing is certain, airport owners and operators will continue to be faced with challenging environments in which to do business. In response, many airports recognize the value in diversifying their revenue streams through a variety of landside property developments within the airport boundary. In Australia it is the type and intended market of this development that is a point of contention between private airport corporations and their surrounding municipalities. The aim of this preliminary research is to identify and categorize on-airport development occurring at the twenty-two privatized Australian airports which are administered under the Airports Act [1996]. This new knowledge will assist airport and municipal planners in understanding the current extent and category of on-airport land use, allowing them to make better decisions when proposing development both within airport master plans and beyond the airport boundary in local town and municipal plans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying an individual from surveillance video is a difficult, time consuming and labour intensive process. The proposed system aims to streamline this process by filtering out unwanted scenes and enhancing an individual's face through super-resolution. An automatic face recognition system is then used to identify the subject or present the human operator with likely matches from a database. A person tracker is used to speed up the subject detection and super-resolution process by tracking moving subjects and cropping a region of interest around the subject's face to reduce the number and size of the image frames to be super-resolved respectively. In this paper, experiments have been conducted to demonstrate how the optical flow super-resolution method used improves surveillance imagery for visual inspection as well as automatic face recognition on an Eigenface and Elastic Bunch Graph Matching system. The optical flow based method has also been benchmarked against the ``hallucination'' algorithm, interpolation methods and the original low-resolution images. Results show that both super-resolution algorithms improved recognition rates significantly. Although the hallucination method resulted in slightly higher recognition rates, the optical flow method produced less artifacts and more visually correct images suitable for human consumption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prawns are a substantial Australian resource but presently are processed in a very labour-intensive manner. A prototype system has been developed for automatically grading and packing prawns into single-layer 'consumer packs' in which each prawn is approximately straight and has the same orientation. The novel technology includes a machine vision system that has been specially programmed to calculate relevant parameters at high speed and a gripper mechanism that can acquire, straighten and place prawns of various sizes. The system can be implemented on board a trawler or in an onshore processing facility. © 1993.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calibration of movement tracking systems is a difficult problem faced by both animals and robots. The ability to continuously calibrate changing systems is essential for animals as they grow or are injured, and highly desirable for robot control or mapping systems due to the possibility of component wear, modification, damage and their deployment on varied robotic platforms. In this paper we use inspiration from the animal head direction tracking system to implement a self-calibrating, neurally-based robot orientation tracking system. Using real robot data we demonstrate how the system can remove tracking drift and learn to consistently track rotation over a large range of velocities. The neural tracking system provides the first steps towards a fully neural SLAM system with improved practical applicability through selftuning and adaptation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To demonstrate properties of the International Classification of the External Cause of Injury (ICECI) as a tool for use in injury prevention research. Methods: The Childhood Injury Prevention Study (CHIPS) is a prospective longitudinal follow up study of a cohort of 871 children 5–12 years of age, with a nested case crossover component. The ICECI is the latest tool in the International Classification of Diseases (ICD) family and has been designed to improve the precision of coding injury events. The details of all injury events recorded in the study, as well as all measured injury related exposures, were coded using the ICECI. This paper reports a substudy on the utility and practicability of using the ICECI in the CHIPS to record exposures. Interrater reliability was quantified for a sample of injured participants using the Kappa statistic to measure concordance between codes independently coded by two research staff. Results: There were 767 diaries collected at baseline and event details from 563 injuries and exposure details from injury crossover periods. There were no event, location, or activity details which could not be coded using the ICECI. Kappa statistics for concordance between raters within each of the dimensions ranged from 0.31 to 0.93 for the injury events and 0.94 and 0.97 for activity and location in the control periods. Discussion: This study represents the first detailed account of the properties of the ICECI revealed by its use in a primary analytic epidemiological study of injury prevention. The results of this study provide considerable support for the ICECI and its further use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustically, car cabins are extremely noisy and as a consequence, existing audio-only speech recognition systems, for voice-based control of vehicle functions such as the GPS based navigator, perform poorly. Audio-only speech recognition systems fail to make use of the visual modality of speech (eg: lip movements). As the visual modality is immune to acoustic noise, utilising this visual information in conjunction with an audio only speech recognition system has the potential to improve the accuracy of the system. The field of recognising speech using both auditory and visual inputs is known as Audio Visual Speech Recognition (AVSR). Continuous research in AVASR field has been ongoing for the past twenty-five years with notable progress being made. However, the practical deployment of AVASR systems for use in a variety of real-world applications has not yet emerged. The main reason is due to most research to date neglecting to address variabilities in the visual domain such as illumination and viewpoint in the design of the visual front-end of the AVSR system. In this paper we present an AVASR system in a real-world car environment using the AVICAR database [1], which is publicly available in-car database and we show that the use of visual speech conjunction with the audio modality is a better approach to improve the robustness and effectiveness of voice-only recognition systems in car cabin environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an automated system for 3D assembly of tissue engineering (TE) scaffolds made from biocompatible microscopic building blocks with relatively large fabrication error. It focuses on the pin-into-hole force control developed for this demanding microassembly task. A beam-like gripper with integrated force sensing at a 3 mN resolution with a 500 mN measuring range is designed, and is used to implement an admittance force-controlled insertion using commercial precision stages. Visual-based alignment followed by an insertion is complemented by a haptic exploration strategy using force and position information. The system demonstrates fully automated construction of TE scaffolds with 50 microparts whose dimension error is larger than 5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the automatic atti- tude and depth control of a torpedo shaped submarine. Both experimental results and dynamic simulations are used to tune feed- back control loops in order to obtain stable control of yaw, pitch and roll of the craft.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report explains the objectives, datasets and evaluation criteria of both the clustering and classification tasks set in the INEX 2009 XML Mining track. The report also describes the approaches and results obtained by the different participants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A one-sided classifier for a given class of languages converges to 1 on every language from the class and outputs 0 infinitely often on languages outside the class. A two-sided classifier, on the other hand, converges to 1 on languages from the class and converges to 0 on languages outside the class. The present paper investigates one-sided and two-sided classification for classes of recursive languages. Theorems are presented that help assess the classifiability of natural classes. The relationships of classification to inductive learning theory and to structural complexity theory in terms of Turing degrees are studied. Furthermore, the special case of classification from only positive data is also investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent times, the improved levels of accuracy obtained by Automatic Speech Recognition (ASR) technology has made it viable for use in a number of commercial products. Unfortunately, these types of applications are limited to only a few of the world’s languages, primarily because ASR development is reliant on the availability of large amounts of language specific resources. This motivates the need for techniques which reduce this language-specific, resource dependency. Ideally, these approaches should generalise across languages, thereby providing scope for rapid creation of ASR capabilities for resource poor languages. Cross Lingual ASR emerges as a means for addressing this need. Underpinning this approach is the observation that sound production is largely influenced by the physiological construction of the vocal tract, and accordingly, is human, and not language specific. As a result, a common inventory of sounds exists across languages; a property which is exploitable, as sounds from a resource poor, target language can be recognised using models trained on resource rich, source languages. One of the initial impediments to the commercial uptake of ASR technology was its fragility in more challenging environments, such as conversational telephone speech. Subsequent improvements in these environments has gained consumer confidence. Pragmatically, if cross lingual techniques are to considered a viable alternative when resources are limited, they need to perform under the same types of conditions. Accordingly, this thesis evaluates cross lingual techniques using two speech environments; clean read speech and conversational telephone speech. Languages used in evaluations are German, Mandarin, Japanese and Spanish. Results highlight that previously proposed approaches provide respectable results for simpler environments such as read speech, but degrade significantly when in the more taxing conversational environment. Two separate approaches for addressing this degradation are proposed. The first is based on deriving better target language lexical representation, in terms of the source language model set. The second, and ultimately more successful approach, focuses on improving the classification accuracy of context-dependent (CD) models, by catering for the adverse influence of languages specific phonotactic properties. Whilst the primary research goal in this thesis is directed towards improving cross lingual techniques, the catalyst for investigating its use was based on expressed interest from several organisations for an Indonesian ASR capability. In Indonesia alone, there are over 200 million speakers of some Malay variant, provides further impetus and commercial justification for speech related research on this language. Unfortunately, at the beginning of the candidature, limited research had been conducted on the Indonesian language in the field of speech science, and virtually no resources existed. This thesis details the investigative and development work dedicated towards obtaining an ASR system with a 10000 word recognition vocabulary for the Indonesian language.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speaker verification is the process of verifying the identity of a person by analysing their speech. There are several important applications for automatic speaker verification (ASV) technology including suspect identification, tracking terrorists and detecting a person’s presence at a remote location in the surveillance domain, as well as person authentication for phone banking and credit card transactions in the private sector. Telephones and telephony networks provide a natural medium for these applications. The aim of this work is to improve the usefulness of ASV technology for practical applications in the presence of adverse conditions. In a telephony environment, background noise, handset mismatch, channel distortions, room acoustics and restrictions on the available testing and training data are common sources of errors for ASV systems. Two research themes were pursued to overcome these adverse conditions: Modelling mismatch and modelling uncertainty. To directly address the performance degradation incurred through mismatched conditions it was proposed to directly model this mismatch. Feature mapping was evaluated for combating handset mismatch and was extended through the use of a blind clustering algorithm to remove the need for accurate handset labels for the training data. Mismatch modelling was then generalised by explicitly modelling the session conditions as a constrained offset of the speaker model means. This session variability modelling approach enabled the modelling of arbitrary sources of mismatch, including handset type, and halved the error rates in many cases. Methods to model the uncertainty in speaker model estimates and verification scores were developed to address the difficulties of limited training and testing data. The Bayes factor was introduced to account for the uncertainty of the speaker model estimates in testing by applying Bayesian theory to the verification criterion, with improved performance in matched conditions. Modelling the uncertainty in the verification score itself met with significant success. Estimating a confidence interval for the "true" verification score enabled an order of magnitude reduction in the average quantity of speech required to make a confident verification decision based on a threshold. The confidence measures developed in this work may also have significant applications for forensic speaker verification tasks.