283 resultados para AC85-4
Resumo:
Background Very few articles have been written about the expression of kallikreins (KLK4 and KLK7) in oral cancers. Therefore, the purpose of this study was to examine and report on their prognostic potential. Methods Eighty archival blocks of primary oral cancers were sectioned and stained for KLK4 and KLK7 by immunohistochemistry. The percentage and the intensity of malignant keratinocyte staining were correlated with patient survival using Cox regression analysis. Results Both kallikreins were expressed strongly in the majority of tumor cells in 68 of 80 cases: these were mostly moderately or poorly differentiated neoplasms. Staining was particularly intense at the infiltrating front. Patients with intense staining had significantly shorter overall survival (p < .05). Conclusion This is the first observation on the patient survival influenced by kallikrein expression in oral carcinoma. The findings are consistent with those for carcinomas at other sites, in particular the prostate and ovary. KLK4 and/or KLK7 immunohistochemistry seems to have diagnostic and prognostic potential in this disease.
Resumo:
Halogen bonding has been observed for the first time between an isoindoline nitroxide and an iodoperfluorocarbon (see figure), which cocrystallize to form a discrete 2:1 supramolecular compound in which NO.⋅⋅⋅I halogen bonding is the dominant intermolecular interaction. This illustrates the potential use of halogen bonding and isoindoline nitroxide tectons for the assembly of organic spin systems...
Resumo:
In the structure of title compound [Cs2(C7H5N2O4)2(H2O)2]n the asymmetric unit comprises two independent and different Cs centres, one nine-coordinate, the other seven coordinate, with both having irregular stereochemistry. The CsO9 coordination comprises oxygen donors from three bridging water molecules, one of which is doubly bridging, three from carboxylate groups, and three from nitro groups, of which two are bidentate chelate bridging. The CsO6N coordination comprises the two bridging water molecules, one amine N donor, one carboxyl O donor and four O donors from nitro groups (two from the chelate bridges). The extension of the dimeric unit gives a two-dimensional polymeric structure which is stabilized by both intra- and intermolecular amine N-H...O and water O-H...O hydrogen bonds to carboxyl O acceptors, as well as inter-ring pi-pi interactions [minimum ring centroid separation, 3.4172(15)A].
Resumo:
In the structure of the 1:1 proton-transfer compound of brucine with 2-(2,4,6-trinitroanilino)benzoic acid C23H27N2O4+ . C13H7N4O8- . H~2~O, the brucinium cations form the classic undulating ribbon substructures through overlapping head-to-tail interactions while the anions and the three related partial water molecules of solvation (having occupancies of 0.73, 0.17 and 0.10) occupy the interstitial regions of the structure. The cations are linked to the anions directly through N-H...O(carboxyl) hydrogen bonds and indirectly by the three water molecules which form similar conjoint cyclic bridging units [graph set R2/4(8)] through O-H...O(carbonyl) and O(carboxyl) hydrogen bonds, giving a two-dimensional layered structure. Within the anion, intramolecular N-H...O(carboxyl) and N H...O(nitro) hydrogen bonds result in the benzoate and picrate rings being rotated slightly out of coplanarity inter-ring dihedral angle 32.50(14)\%]. This work provides another example of the molecular selectivity of brucine in forming stable crystal structures and also represents the first reported structure of any form of the guest compound 2-(2,4,6-trinitroanilino)benzoic acid.
Resumo:
In the structure of the title compound, [Mg(H2O)6]2+ 2(C7H5O6S-). 2(H2O), the octahedral complex cations lie on crystallographic inversion centres and are hydrogen-bonded through the coordinated waters to the substituted benzenesulfonate monoanions and the water molecules of solvation, and together with a carboxylic acid O-H...O(sulfonate) association, give a three-dimensional structure.
Resumo:
Magnesium minerals are important for the understanding of the concept of geosequestration. One method of studying the hydrated hydroxy magnesium carbonate minerals is through vibrational spectroscopy. A combination of Raman and infrared spectroscopy has been used to study the mineral hydromagnesite. An intense band is observed at 1121 cm-1 attributed CO32- ν1 symmetric stretching mode. A series of infrared bands at 1387, 1413, 1474 cm-1 are assigned to the CO32- ν3 antisymmetric stretching modes. The CO32- ν3 antisymmetric stretching vibrations are extremely weak in the Raman spectrum and are observed at 1404, 1451, 1490 and 1520 cm-1. A series of Raman bands at 708, 716, 728, 758 cm-1 are assigned to the CO32- ν2 in-plane bending mode. The Raman spectrum in the OH stretching region is characterised by bands at 3416, 3516 and 3447 cm-1. In the infrared spectrum a broad band is found at 2940 cm-1 assigned to water stretching vibrations. Infrared bands at 3430, 3446, 3511, 2648 and 3685 cm-1 are attributed to MgOH stretching modes.