880 resultados para Grouped data


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pseudo-marginal methods such as the grouped independence Metropolis-Hastings (GIMH) and Markov chain within Metropolis (MCWM) algorithms have been introduced in the literature as an approach to perform Bayesian inference in latent variable models. These methods replace intractable likelihood calculations with unbiased estimates within Markov chain Monte Carlo algorithms. The GIMH method has the posterior of interest as its limiting distribution, but suffers from poor mixing if it is too computationally intensive to obtain high-precision likelihood estimates. The MCWM algorithm has better mixing properties, but less theoretical support. In this paper we propose to use Gaussian processes (GP) to accelerate the GIMH method, whilst using a short pilot run of MCWM to train the GP. Our new method, GP-GIMH, is illustrated on simulated data from a stochastic volatility and a gene network model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Making Sense of Mass Education provides an engaging and accessible analysis of traditional issues associated with mass education. The book challenges preconceptions about social class, gender and ethnicity discrimination; highlights the interplay between technology, media, popular culture and schooling; and inspects the relevance of ethics and philosophy in the modern classroom. This new edition has been comprehensively updated to provide current information regarding literature, statistics and legal policies, and significantly expands on the previous edition's structure of derailing traditional myths about education as a point of discussion. It also features two new chapters on Big Data and Globalisation and what they mean for the Australian classroom. Written for students, practising teachers and academics alike, Making Sense of Mass Education summarises the current educational landscape in Australia and looks at fundamental issues in society as they relate to education.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE Corneal confocal microscopy is a novel diagnostic technique for the detection of nerve damage and repair in a range of peripheral neuropathies, in particular diabetic neuropathy. Normative reference values are required to enable clinical translation and wider use of this technique. We have therefore undertaken a multicenter collaboration to provide worldwide age-adjusted normative values of corneal nerve fiber parameters. RESEARCH DESIGN AND METHODS A total of 1,965 corneal nerve images from 343 healthy volunteers were pooled from six clinical academic centers. All subjects underwent examination with the Heidelberg Retina Tomograph corneal confocal microscope. Images of the central corneal subbasal nerve plexus were acquired by each center using a standard protocol and analyzed by three trained examiners using manual tracing and semiautomated software (CCMetrics). Age trends were established using simple linear regression, and normative corneal nerve fiber density (CNFD), corneal nerve fiber branch density (CNBD), corneal nerve fiber length (CNFL), and corneal nerve fiber tortuosity (CNFT) reference values were calculated using quantile regression analysis. RESULTS There was a significant linear age-dependent decrease in CNFD (-0.164 no./mm(2) per year for men, P < 0.01, and -0.161 no./mm(2) per year for women, P < 0.01). There was no change with age in CNBD (0.192 no./mm(2) per year for men, P = 0.26, and -0.050 no./mm(2) per year for women, P = 0.78). CNFL decreased in men (-0.045 mm/mm(2) per year, P = 0.07) and women (-0.060 mm/mm(2) per year, P = 0.02). CNFT increased with age in men (0.044 per year, P < 0.01) and women (0.046 per year, P < 0.01). Height, weight, and BMI did not influence the 5th percentile normative values for any corneal nerve parameter. CONCLUSIONS This study provides robust worldwide normative reference values for corneal nerve parameters to be used in research and clinical practice in the study of diabetic and other peripheral neuropathies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective Vast amounts of injury narratives are collected daily and are available electronically in real time and have great potential for use in injury surveillance and evaluation. Machine learning algorithms have been developed to assist in identifying cases and classifying mechanisms leading to injury in a much timelier manner than is possible when relying on manual coding of narratives. The aim of this paper is to describe the background, growth, value, challenges and future directions of machine learning as applied to injury surveillance. Methods This paper reviews key aspects of machine learning using injury narratives, providing a case study to demonstrate an application to an established human-machine learning approach. Results The range of applications and utility of narrative text has increased greatly with advancements in computing techniques over time. Practical and feasible methods exist for semi-automatic classification of injury narratives which are accurate, efficient and meaningful. The human-machine learning approach described in the case study achieved high sensitivity and positive predictive value and reduced the need for human coding to less than one-third of cases in one large occupational injury database. Conclusion The last 20 years have seen a dramatic change in the potential for technological advancements in injury surveillance. Machine learning of ‘big injury narrative data’ opens up many possibilities for expanded sources of data which can provide more comprehensive, ongoing and timely surveillance to inform future injury prevention policy and practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Standard methods for quantifying IncuCyte ZOOM™ assays involve measurements that quantify how rapidly the initially-vacant area becomes re-colonised with cells as a function of time. Unfortunately, these measurements give no insight into the details of the cellular-level mechanisms acting to close the initially-vacant area. We provide an alternative method enabling us to quantify the role of cell motility and cell proliferation separately. To achieve this we calibrate standard data available from IncuCyte ZOOM™ images to the solution of the Fisher-Kolmogorov model. Results: The Fisher-Kolmogorov model is a reaction-diffusion equation that has been used to describe collective cell spreading driven by cell migration, characterised by a cell diffusivity, D, and carrying capacity limited proliferation with proliferation rate, λ, and carrying capacity density, K. By analysing temporal changes in cell density in several subregions located well-behind the initial position of the leading edge we estimate λ and K. Given these estimates, we then apply automatic leading edge detection algorithms to the images produced by the IncuCyte ZOOM™ assay and match this data with a numerical solution of the Fisher-Kolmogorov equation to provide an estimate of D. We demonstrate this method by applying it to interpret a suite of IncuCyte ZOOM™ assays using PC-3 prostate cancer cells and obtain estimates of D, λ and K. Comparing estimates of D, λ and K for a control assay with estimates of D, λ and K for assays where epidermal growth factor (EGF) is applied in varying concentrations confirms that EGF enhances the rate of scratch closure and that this stimulation is driven by an increase in D and λ, whereas K is relatively unaffected by EGF. Conclusions: Our approach for estimating D, λ and K from an IncuCyte ZOOM™ assay provides more detail about cellular-level behaviour than standard methods for analysing these assays. In particular, our approach can be used to quantify the balance of cell migration and cell proliferation and, as we demonstrate, allow us to quantify how the addition of growth factors affects these processes individually.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Images from cell biology experiments often indicate the presence of cell clustering, which can provide insight into the mechanisms driving the collective cell behaviour. Pair-correlation functions provide quantitative information about the presence, or absence, of clustering in a spatial distribution of cells. This is because the pair-correlation function describes the ratio of the abundance of pairs of cells, separated by a particular distance, relative to a randomly distributed reference population. Pair-correlation functions are often presented as a kernel density estimate where the frequency of pairs of objects are grouped using a particular bandwidth (or bin width), Δ>0. The choice of bandwidth has a dramatic impact: choosing Δ too large produces a pair-correlation function that contains insufficient information, whereas choosing Δ too small produces a pair-correlation signal dominated by fluctuations. Presently, there is little guidance available regarding how to make an objective choice of Δ. We present a new technique to choose Δ by analysing the power spectrum of the discrete Fourier transform of the pair-correlation function. Using synthetic simulation data, we confirm that our approach allows us to objectively choose Δ such that the appropriately binned pair-correlation function captures known features in uniform and clustered synthetic images. We also apply our technique to images from two different cell biology assays. The first assay corresponds to an approximately uniform distribution of cells, while the second assay involves a time series of images of a cell population which forms aggregates over time. The appropriately binned pair-correlation function allows us to make quantitative inferences about the average aggregate size, as well as quantifying how the average aggregate size changes with time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Learner and first year probationary motorcyclists are over-represented in traffic accidents, being involved about four times as often as full motorcycle licence holders in relation to their numbers. In an attempt to reduce this over-involvement, the Victorian Government amended the law in 1979 to restrict learner and first year probationary motorcyclists to motorcycles with engine capacities of less than 260 cc. This paper reports an evaluation which showed that casualty rates for learner and first year probationers began to decrease from mid 1979 and continued to do so until the end of 1980. A further analysis indicated that compared to full licence holder casualties, learner permit casualties were about 40% less than expected while first year probationary casualties were about 39% lower.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To evaluate the underreporting rate of death -cause data in Shandong province during 2012 to 2013 by capture -mark -recapture method and to provide the base for health strategy. Methods All counties were divided into 5 stratifications according the death rates of 2012, and 14 counties were selected, then 3 towns or streets were selected in each country, 10 villages or neighborhood committees were selected in each town (street). The death data collected from security bureau and civil affairs bureau were compared with the reporting death data from the National Cause of Death Surveillance, and the underreporting rate was calculated. Results In present study, 6 929 death cases were collected, it was found that 1 556 cases were underreported. The death cases estimated by CMR method were 6 227 cases (95%CI: 7 593-7 651), and the average underreporting rate was 23.15%. There were significantly differences between different stratifications (P<0.01). The underreporting rate in 0-4 years old group was 56.93%, the male underreporting rate was 22.31% and the female underreporting rate was 24.09%. There was no significant difference between male and female groups (P>0.05). Conclusion There is an obvious underreport in the cause of death surveillance of Shandong province, and the underreporting rates are different among the 5 stratifications. The underreporting rate is higher in 0-4 years old group, and the investigation of the death cause surveillance for young residents is not perfect in some countries. The investigation quality of the death cause surveillance should be improved, increasing the integrity of the report data and adjusting the mortalities in different stratifications for obtaining a accurate mortality in Shandong province.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In our recent paper [1], we discussed some potential undesirable consequences of public data archiving (PDA) with specific reference to long-term studies and proposed solutions to manage these issues. We reaffirm our commitment to data sharing and collaboration, both of which have been common and fruitful practices supported for many decades by researchers involved in long-term studies. We acknowledge the potential benefits of PDA (e.g., [2]), but believe that several potential negative consequences for science have been underestimated [1] (see also 3 and 4). The objective of our recent paper [1] was to define practices to simultaneously maximize the benefits and minimize the potential unwanted consequences of PDA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The number of genetic factors associated with common human traits and disease is increasing rapidly, and the general public is utilizing affordable, direct-to-consumer genetic tests. The results of these tests are often in the public domain. A combination of factors has increased the potential for the indirect estimation of an individual's risk for a particular trait. Here we explain the basic principals underlying risk estimation which allowed us to test the ability to make an indirect risk estimation from genetic data by imputing Dr. James Watson's redacted apolipoprotein E gene (APOE) information. The principles underlying risk prediction from genetic data have been well known and applied for many decades, however, the recent increase in genomic knowledge, and advances in mathematical and statistical techniques and computational power, make it relatively easy to make an accurate but indirect estimation of risk. There is a current hazard for indirect risk estimation that is relevant not only to the subject but also to individuals related to the subject; this risk will likely increase as more detailed genomic data and better computational tools become available.