863 resultados para business modeling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rapid increase in migration into host countries and the growth of immigrant-owned business enterprises has revitalized research on ethnic business. Does micro (individual)-level social capital, or meso (group)-level location within the ethnic enclave lead to immigrant business growth? Or do you need both? We analyze quantitative data collected from 110 Chinese restaurants in Australia, a major host country. At the micro level we find that coethnic (same ethnic group) networks are critical to the growth of an immigrant entrepreneur's business, particularly in the early years. But non-coethnic (different ethnic group) social capital only has a positive impact on business growth for immigrant businesses outside the ethnic enclave. Our findings are relevant, not only to host-country policymakers, but also for future immigrant business owners and ethnic community leaders trying to better understand how to promote healthy communities and sustainable economic growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last 30 years, numerous research groups have attempted to provide mathematical descriptions of the skin wound healing process. The development of theoretical models of the interlinked processes that underlie the healing mechanism has yielded considerable insight into aspects of this critical phenomenon that remain difficult to investigate empirically. In particular, the mathematical modeling of angiogenesis, i.e., capillary sprout growth, has offered new paradigms for the understanding of this highly complex and crucial step in the healing pathway. With the recent advances in imaging and cell tracking, the time is now ripe for an appraisal of the utility and importance of mathematical modeling in wound healing angiogenesis research. The purpose of this review is to pedagogically elucidate the conceptual principles that have underpinned the development of mathematical descriptions of wound healing angiogenesis, specifically those that have utilized a continuum reaction-transport framework, and highlight the contribution that such models have made toward the advancement of research in this field. We aim to draw attention to the common assumptions made when developing models of this nature, thereby bringing into focus the advantages and limitations of this approach. A deeper integration of mathematical modeling techniques into the practice of wound healing angiogenesis research promises new perspectives for advancing our knowledge in this area. To this end we detail several open problems related to the understanding of wound healing angiogenesis, and outline how these issues could be addressed through closer cross-disciplinary collaboration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If the land sector is to make significant contributions to mitigating anthropogenic greenhouse gas (GHG) emissions in coming decades, it must do so while concurrently expanding production of food and fiber. In our view, mathematical modeling will be required to provide scientific guidance to meet this challenge. In order to be useful in GHG mitigation policy measures, models must simultaneously meet scientific, software engineering, and human capacity requirements. They can be used to understand GHG fluxes, to evaluate proposed GHG mitigation actions, and to predict and monitor the effects of specific actions; the latter applications require a change in mindset that has parallels with the shift from research modeling to decision support. We compare and contrast 6 agro-ecosystem models (FullCAM, DayCent, DNDC, APSIM, WNMM, and AgMod), chosen because they are used in Australian agriculture and forestry. Underlying structural similarities in the representations of carbon flows though plants and soils in these models are complemented by a diverse range of emphases and approaches to the subprocesses within the agro-ecosystem. None of these agro-ecosystem models handles all land sector GHG fluxes, and considerable model-based uncertainty exists for soil C fluxes and enteric methane emissions. The models also show diverse approaches to the initialisation of model simulations, software implementation, distribution, licensing, and software quality assurance; each of these will differentially affect their usefulness for policy-driven GHG mitigation prediction and monitoring. Specific requirements imposed on the use of models by Australian mitigation policy settings are discussed, and areas for further scientific development of agro-ecosystem models for use in GHG mitigation policy are proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostate cancer is the most commonly diagnosed malignancy in men and advanced disease is incurable. Model systems are a fundamental tool for research and many in vitro models of prostate cancer use cancer cell lines in monoculture. Although these have yielded significant insight they are inherently limited by virtue of their two-dimensional (2D) growth and inability to include the influence of tumour microenvironment. These major limitations can be overcome with the development of newer systems that more faithfully recreate and mimic the complex in vivo multi-cellular, three-dimensional (3D) microenvironment. This article presents the current state of in vitro models for prostate cancer, with particular emphasis on 3D systems and the challenges that remain before their potential to advance our understanding of prostate disease and aid in the development and testing of new therapeutic agents can be realised.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The business value of IT (BVIT) has been a prominent and central research topic in the IS discipline. Due to continuous and unpredictable technology and business changes, a more dynamic perspective on IT business value that includes organizational learning is required. We suggest that simple rules heuristics can address this challenge. The simple rules heuristics approach has been introduced by Eisenhardt and co-authors (Bingham & Eisenhardt, 2011; Bingham, Eisenhardt, & Furr, 2007; Eisenhardt & Sull, 2001) to better understand strategic decision making for capturing superabundant, heterogeneous, fastmoving opportunities. They argue that explicit organizational learning can translate accumulated experience into increasingly effective heuristics for strategic processes in highvelocity environments. We make three main contributions by exploring the suitability of a simple rules heuristics approach for the creation of IT business value: (1) we propose six types of simple rules heuristics for capturing IT-based opportunities in dynamic environments, including synergy heuristics as specifically relevant in an IT context, (2) we show how a simple rules heuristics approach can advance our understanding of dynamics and organizational learning for BVIT, and; (3) we introduce the strategic logic of opportunity to BVIT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large sized power transformers are important parts of the power supply chain. These very critical networks of engineering assets are an essential base of a nation’s energy resource infrastructure. This research identifies the key factors influencing transformer normal operating conditions and predicts the asset management lifespan. Engineering asset research has developed few lifespan forecasting methods combining real-time monitoring solutions for transformer maintenance and replacement. Utilizing the rich data source from a remote terminal unit (RTU) system for sensor-data driven analysis, this research develops an innovative real-time lifespan forecasting approach applying logistic regression based on the Weibull distribution. The methodology and the implementation prototype are verified using a data series from 161 kV transformers to evaluate the efficiency and accuracy for energy sector applications. The asset stakeholders and suppliers significantly benefit from the real-time power transformer lifespan evaluation for maintenance and replacement decision support.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to develop a model capable of predicting variability in the mental workload experienced by frontline operators under routine and nonroutine conditions. Background: Excess workload is a risk that needs to be managed in safety-critical industries. Predictive models are needed to manage this risk effectively yet are difficult to develop. Much of the difficulty stems from the fact that workload prediction is a multilevel problem. Method: A multilevel workload model was developed in Study 1 with data collected from an en route air traffic management center. Dynamic density metrics were used to predict variability in workload within and between work units while controlling for variability among raters. The model was cross-validated in Studies 2 and 3 with the use of a high-fidelity simulator. Results: Reported workload generally remained within the bounds of the 90% prediction interval in Studies 2 and 3. Workload crossed the upper bound of the prediction interval only under nonroutine conditions. Qualitative analyses suggest that nonroutine events caused workload to cross the upper bound of the prediction interval because the controllers could not manage their workload strategically. Conclusion: The model performed well under both routine and nonroutine conditions and over different patterns of workload variation. Application: Workload prediction models can be used to support both strategic and tactical workload management. Strategic uses include the analysis of historical and projected workflows and the assessment of staffing needs. Tactical uses include the dynamic reallocation of resources to meet changes in demand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural equation modeling (SEM) is a powerful statistical approach for the testing of networks of direct and indirect theoretical causal relationships in complex data sets with intercorrelated dependent and independent variables. SEM is commonly applied in ecology, but the spatial information commonly found in ecological data remains difficult to model in a SEM framework. Here we propose a simple method for spatially explicit SEM (SE-SEM) based on the analysis of variance/covariance matrices calculated across a range of lag distances. This method provides readily interpretable plots of the change in path coefficients across scale and can be implemented using any standard SEM software package. We demonstrate the application of this method using three studies examining the relationships between environmental factors, plant community structure, nitrogen fixation, and plant competition. By design, these data sets had a spatial component, but were previously analyzed using standard SEM models. Using these data sets, we demonstrate the application of SE-SEM to regularly spaced, irregularly spaced, and ad hoc spatial sampling designs and discuss the increased inferential capability of this approach compared with standard SEM. We provide an R package, sesem, to easily implement spatial structural equation modeling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single-generation dataset consisting of 1,730 records from a selection program for high growth rate in giant freshwater prawn (GFP, Macrobrachium rosenbergii) was used to derive prediction equations for meat weight and meat yield. Models were based on body traits [body weight, total length and abdominal width (AW)] and carcass measurements (tail weight and exoskeleton-off weight). Lengths and width were adjusted for the systematic effects of selection line, male morphotypes and female reproductive status, and for the covariables of age at slaughter within sex and body weight. Body and meat weights adjusted for the same effects (except body weight) were used to calculate meat yield (expressed as percentage of tail weight/body weight and exoskeleton-off weight/body weight). The edible meat weight and yield in this GFP population ranged from 12 to 15 g and 37 to 45 %, respectively. The simple (Pearson) correlation coefficients between body traits (body weight, total length and AW) and meat weight were moderate to very high and positive (0.75–0.94), but the correlations between body traits and meat yield were negative (−0.47 to −0.74). There were strong linear positive relationships between measurements of body traits and meat weight, whereas relationships of body traits with meat yield were moderate and negative. Step-wise multiple regression analysis showed that the best model to predict meat weight included all body traits, with a coefficient of determination (R 2) of 0.99 and a correlation between observed and predicted values of meat weight of 0.99. The corresponding figures for meat yield were 0.91 and 0.95, respectively. Body weight or length was the best predictor of meat weight, explaining 91–94 % of observed variance when it was fitted alone in the model. By contrast, tail width explained a lower proportion (69–82 %) of total variance in the single trait models. It is concluded that in practical breeding programs, improvement of meat weight can be easily made through indirect selection for body trait combinations. The improvement of meat yield, albeit being more difficult, is possible by genetic means, with 91 % of the variation in the trait explained by the body and carcass traits examined in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes at work are often accompanied with the threat of, or actual, resource loss. Through an experiment, we investigated the detrimental effect of the threat of resource loss on adaptive task performance. Self-regulation (i.e., task focus and emotion control) was hypothesized to buffer the negative relationship between the threat of resource loss and adaptive task performance. Adaptation was conceptualized as relearning after a change in task execution rules. Threat of resource loss was manipulated for 100 participants undertaking an air traffic control task. Using discontinuous growth curve modeling, 2 kinds of adaptation—transition adaptation and reacquisition adaptation—were differentiated. The results showed that individuals who experienced the threat of resource loss had a stronger drop in performance (less transition adaptation) and a subsequent slower recovery (less reacquisition adaptation) compared with the control group who experienced no threat. Emotion control (but not task focus) moderated the relationship between the threat of resource loss and transition adaptation. In this respect, individuals who felt threatened but regulated their emotions performed better immediately after the task change (but not later on) compared with those individuals who felt threatened and did not regulate their emotions as well. However, later on, relearning (reacquisition adaptation) under the threat of resource loss was facilitated when individuals concentrated on the task at hand.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis provides two main contributions. The first one is BP-TRBAC, a unified authorisation model that can support legacy systems as well as business process systems. BP-TRBAC supports specific features that are required by business process environments. BP-TRBAC is designed to be used as an independent enterprise-wide authorisation model, rather than having it as part of the workflow system. It is designed to be the main authorisation model for an organisation. The second contribution is BP-XACML, an authorisation policy language that is designed to represent BPM authorisation policies for business processes. The contribution also includes a policy model for BP-XACML. Using BP-TRBAC as an authorisation model together with BP-XACML as an authorisation policy language will allow an organisation to manage and control authorisation requests from workflow systems and other legacy systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates the procedures for probabilistic assessment of a pesticide fate and transport model, PCPF-1, to elucidate the modeling uncertainty using the Monte Carlo technique. Sensitivity analyses are performed to investigate the influence of herbicide characteristics and related soil properties on model outputs using four popular rice herbicides: mefenacet, pretilachlor, bensulfuron-methyl and imazosulfuron. Uncertainty quantification showed that the simulated concentrations in paddy water varied more than those of paddy soil. This tendency decreased as the simulation proceeded to a later period but remained important for herbicides having either high solubility or a high 1st-order dissolution rate. The sensitivity analysis indicated that PCPF-1 parameters requiring careful determination are primarily those involve with herbicide adsorption (the organic carbon content, the bulk density and the volumetric saturated water content), secondary parameters related with herbicide mass distribution between paddy water and soil (1st-order desorption and dissolution rates) and lastly, those involving herbicide degradations. © Pesticide Science Society of Japan.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pesticide use in paddy rice production may contribute to adverse ecological effects in surface waters. Risk assessments conducted for regulatory purposes depend on the use of simulation models to determine predicted environment concentrations (PEC) of pesticides. Often tiered approaches are used, in which assessments at lower tiers are based on relatively simple models with conservative scenarios, while those at higher tiers have more realistic representations of physical and biochemical processes. This chapter reviews models commonly used for predicting the environmental fate of pesticides in rice paddies. Theoretical considerations, unique features, and applications are discussed. This review is expected to provide information to guide model selection for pesticide registration, regulation, and mitigation in rice production areas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this chapter, we explore the 'darker' faces of international business (IB). Over a decade ago, Eden and Len way (2001) raised the need for examining both the 'bright' and the 'dark' side of globalization in order to achieve a better understanding of the concept and of its impact on IB activities. In doing this, they posited the multinational enterprise (MNE) as the 'key agent' and 'f.1ee' of globalization and discussed, primarily, the relationship between MNEs and nation-states as the central interf.1ce of its impact. Additionally, they posited that, by and large, the community of IB scholars positioned themselves at the bright end of the globalization spectrum, seeing it as essentially positive, whilst most non-governmental organizations (NGOs) and international political economy (IPE) academics set themselves at the dark end. Whilst they acknowledged their own 'bright side' tendencies, they called for a more nuanced consideration of MNEs as what they referred to as the Janus bee' of globalization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past fifteen years the music industry has experienced a disruptive process of digital transformation that has reshaped most aspects of the industry; in 2015 the contours of a “new music economy” have begun to emerge. The structure and mechanics of these evolutionary processes vary considerably between continents, and this book examines these processes within Europe, America and Asia. The contributors offer a range of theoretical perspectives, as well as empirical findings from the social sciences and business, as well as the media industries. They offer a holistic understanding of the forces shaping the new music economy, and shed some light on the impact of these forces on the ways in which music is created, aggregated and distributed, and on the economic and social consequences for industry producers and consumers.