939 resultados para SYSTEMS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This tutorial primarily focuses on the technical challenges surrounding the design and implementation of Accountable-eHealth (AeH) systems. The potential benefits of shared eHealth records systems are promising for the future of improved healthcare; however, their uptake is hindered by concerns over the privacy and security of patient information. In the current eHealth environment, there are competing requirements between healthcare consumers' (i.e. patients) requirements and healthcare professionals' requirements. While consumers want control over their information, healthcare professionals want access to as much information as required in order to make well informed decisions. This conflict is evident in the review of Australia's PCEHR system. Accountable-eHealth systems aim to balance these concerns by implementing Information Accountability (IA) mechanisms. AeH systems create an eHealth environment where health information is available to the right person at the right time without rigid barriers whilst empowering the consumers with information control and transparency, thus, enabling the creation of shared eHealth records that can be useful to both patients and HCPs. In this half-day tutorial, we will discuss and describe the technical challenges surrounding the implementation of AeH systems and the solutions we have devised. A prototype AeH system will be used to demonstrate the functionality of AeH systems, and illustrate some of the proposed solutions. The topics that will be covered include: designing for usability in AeH systems, the privacy and security of audit mechanisms, providing for diversity of users, the scalability of AeH systems, and finally the challenges of enabling research and Big Data Analytics on shared eHealth Records while ensuring accountability and privacy are maintained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supercapacitors are increasingly used as short term energy storage elements in distributed generation systems. The traditional approach in integrating them to the main system is the use of interfacing dc-dc converters which introduce additional costs and power losses. This paper therefore, presents a novel direct integration scheme for supercapacitors and thereby eliminates associated costs and power losses of interfacing converters. The idea is simply to replace ordinary capacitors of three-level flying-capacitor rectifiers with supercapacitors and operate them under variable voltage conditions. An analysis on the reduction of power losses by the proposed system is presented. Furthermore, supercapacitor sizing and implementation issues such as effects of the variable voltage operation and resistive behavior of supercapacitors at high frequencies are also discussed. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term power fluctuations in wind generation system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel gray-box neural network model (GBNNM), including multi-layer perception (MLP) neural network (NN) and integrators, is proposed for a model identification and fault estimation (MIFE) scheme. With the GBNNM, both the nonlinearity and dynamics of a class of nonlinear dynamic systems can be approximated. Unlike previous NN-based model identification methods, the GBNNM directly inherits system dynamics and separately models system nonlinearities. This model corresponds well with the object system and is easy to build. The GBNNM is embedded online as a normal model reference to obtain the quantitative residual between the object system output and the GBNNM output. This residual can accurately indicate the fault offset value, so it is suitable for differing fault severities. To further estimate the fault parameters (FPs), an improved extended state observer (ESO) using the same NNs (IESONN) from the GBNNM is proposed to avoid requiring the knowledge of ESO nonlinearity. Then, the proposed MIFE scheme is applied for reaction wheels (RW) in a satellite attitude control system (SACS). The scheme using the GBNNM is compared with other NNs in the same fault scenario, and several partial loss of effect (LOE) faults with different severities are considered to validate the effectiveness of the FP estimation and its superiority.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The drive towards high efficiency wind energy conversion systems has resulted in almost all the modern wind turbines to operate in the variable speed mode which inevitably requires back-to-back power electronic converters to decouple generator dynamics from the grid. The aim of this paper is to present an analysis on suitable topologies for the generator-side converter (rectifier) of the back-to-back converter arrangement. Performance of the two most popular rectifier systems, namely, the passive diode bridge rectifier and the active six-switch two-level rectifier are taken as two extremes to evaluate other topologies presented in this paper. The other rectifier systems considered in this study include combinations of a diode bridge rectifier and electronic reactance(s), a combination of a rectifier and a dc-dc converter and a half controlled rectifier. Diode-clamped and capacitor-clamped three-level active rectifier topologies and their possible switch reductions are also discussed in relation to the requirements of modern high power wind energy conversion systems (WECSs). Simulation results are presented to support conclusion derived from this analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, electric propulsion systems have increasingly been used in land, sea and air vehicles. The vehicular power systems are usually loaded with tightly regulated power electronic converters which tend to draw constant power. Since the constant power loads (CPLs) impose negative incremental resistance characteristics on the feeder system, they pose a potential threat to the stability of vehicular power systems. This effect becomes more significant in the presence of distribution lines between source and load in large vehicular power systems such as electric ships and more electric aircrafts. System transients such as sudden drop of converter side loads or increase of constant power requirement can cause complete system instability. Most of the existing research work focuses on the modeling and stabilization of DC vehicular power systems with CPLs. Only a few solutions are proposed to stabilize AC vehicular power systems with non-negligible distribution lines and CPLs. Therefore, this paper proposes a novel loop cancellation technique to eliminate constant power instability in AC vehicular power systems with a theoretically unbounded system stability region. Analysis is carried out on system stability with the proposed method and simulation results are presented to validate its effectiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a novel battery direct integration scheme for renewable energy systems. The idea is to replace ordinary capacitors of a three-level flying-capacitor inverter by three battery banks to alleviate power fluctuations in renewable generation. This approach eliminates the need for interfacing dc-dc converters and thus considerably improves the overall efficiency. However, the major problem with this approach is the uneven distribution of space vectors which is due to unavoidable unbalance in clamping voltages. A detailed analysis on the effects of this issue and a novel carrier based pulse width modulation method, which can generate undistorted currents even in the presence of unevenly distributed space vectors, are presented in this paper. A charge/discharge controller is also proposed for power sharing and state of charge balancing of battery banks. Simulation results are presented to verify the efficacy of the proposed system, modulation method and power sharing controller.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Battery-supercapacitor hybrid energy storage systems are becoming popular in the renewable energy sector due to their improved power and energy performances. These hybrid systems require separate dc-dc converters, or at least one dc-dc converter for the supercapacitor bank, to connect them to the dc-link of the grid interfacing inverter. These additional dc-dc converters increase power losses, complexity and cost. Therefore, possibility of their direct connection is investigated in this paper. The inverter system used in this study is formed by cascading two 3-level inverters, named as the “main inverter” and the “auxiliary inverter”, through a coupling transformer. In the test system the main inverter is connected with the rectified output of a wind generator while the auxiliary inverter is directly attached to a battery and a supercapacitor bank. The major issues with this approach are the dynamic changes in dc-link voltages and inevitable imbalances in the auxiliary inverter voltages, which results in unevenly distributed space vectors. A modified SVM technique is proposed to solve this issue. A PWM based time sharing method is proposed for power sharing between the battery and the supercapacitor. Simulation results are presented to verify the efficacy of the proposed modulation and control techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new direct integration scheme for supercapacitors that are used to mitigate short term power fluctuations in wind power systems. The idea is to replace ordinary capacitors of a 3-level flying capacitor inverter by supercapacitors and operate them under variable voltage conditions. This approach eliminates the need of interfacing dc-dc converters for supercapacitor integration and thus considerably improves the overall efficiency. However, the major problem of this unique system is the change of supercapacitor voltages. An analysis on the effects of these voltage variations are presented. A space vector modulation method, built from the scratch, is proposed to generate undistorted current even in the presence of dynamic changes in supercapacitor voltages. A supercapacitor voltage equalisation algorithm is also proposed. Furthermore, resistive behavior of supercapacitors at high frequencies and the need for a low pass filter are highlighted. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term wind power fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solar assisted heat pump is used for different applications, such as, water heating, drying and air conditioning. The unglazed evaporator-collector enables to absorb both solar energy and ambient energy due to low operating temperature. Three different systems are described: solar assisted heat pump system for hot water using an unglazed evaporator collector; solar assisted heat pump for hot water and drying, where evaporator collector and air collector are used; an integrated solar heat pump system making use of solar and ambient energy, and air-con waste heat. Unlike conventional collector, evaporator collector was found to have higher efficiency, 80% to 90%, and the coefficient of performance attained a value as high as 8.0. The integrated system leads to a reduction of global warming, as it uses solar energy, ambient energy and air-con waste heat.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land use and agricultural practices can result in important contributions to the global source strength of atmospheric nitrous oxide (N2O) and methane (CH4). However, knowledge of gas flux from irrigated agriculture is very limited. From April 2005 to October 2006, a study was conducted in the Aral Sea Basin, Uzbekistan, to quantify and compare emissions of N2O and CH4 in various annual and perennial land-use systems: irrigated cotton, winter wheat and rice crops, a poplar plantation and a natural Tugai (floodplain) forest. In the annual systems, average N2O emissions ranged from 10 to 150 μg N2O-N m−2 h−1 with highest N2O emissions in the cotton fields, covering a similar range of previous studies from irrigated cropping systems. Emission factors (uncorrected for background emission), used to determine the fertilizer-induced N2O emission as a percentage of N fertilizer applied, ranged from 0.2% to 2.6%. Seasonal variations in N2O emissions were principally controlled by fertilization and irrigation management. Pulses of N2O emissions occurred after concomitant N-fertilizer application and irrigation. The unfertilized poplar plantation showed high N2O emissions over the entire study period (30 μg N2O-N m−2 h−1), whereas only negligible fluxes of N2O (<2 μg N2O-N m−2 h−1) occurred in the Tugai. Significant CH4 fluxes only were determined from the flooded rice field: Fluxes were low with mean flux rates of 32 mg CH4 m−2 day−1 and a low seasonal total of 35.2 kg CH4 ha−1. The global warming potential (GWP) of the N2O and CH4 fluxes was highest under rice and cotton, with seasonal changes between 500 and 3000 kg CO2 eq. ha−1. The biennial cotton–wheat–rice crop rotation commonly practiced in the region would average a GWP of 2500 kg CO2 eq. ha−1 yr−1. The analyses point out opportunities for reducing the GWP of these irrigated agricultural systems by (i) optimization of fertilization and irrigation practices and (ii) conversion of annual cropping systems into perennial forest plantations, especially on less profitable, marginal lands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a grid-side inverter based supercapacitor direct integration scheme for wind power systems. The inverter used in this study consists of a conventional two-level inverter and three H-bridge modules. Three supercapacitor banks are directly connected to the dc-links of H-bridge modules. This approach eliminates the need for interfacing dc-dc converters and thus considerably improves the overall efficiency. However, for the maximum utilization of super capacitors their voltages should be allowed to vary. As a result of this variable voltage space vectors of the hybrid inverter get distributed unevenly. To handle this issue, a modified PWM method and a space vector modulation method are proposed and they can generate undistorted current even in the presence of unevenly distributed space vectors. A supercapacitor voltage balancing method is also presented in this paper. Simulation results are presented to validate the efficacy of the proposed scheme, modulation methods and control techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An offshore wind turbine usually has the grid step-up transformer integrated in the nacelle. This increases mechanical loading of the tower. In that context, a transformer-less, high voltage, highly-reliable and compact converter system for nacelle installation would be an attractive solution for large offshore wind turbines. This paper, therefore, presents a transformer-less grid integration topology for PMSG based large wind turbine generator systems using modular matrix converters. Each matrix converter module is fed from three generator coils of the PMSG which are phase shifted by 120°. Outputs of matrix converter modules are connected in series to increase the output voltage and thus eliminate the need of a coupling step-up transformer. Moreover, dc-link capacitors found in conventional back-to-back converter topologies are eliminated in the proposed system. Proper multilevel output voltage generation and power sharing between converter modules are achieved through an advanced switching strategy. Simulation results are presented to validate the proposed modular matrix converter system, modulation method and control techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agriculture is responsible for a significant proportion of total anthropogenic greenhouse gas emissions (perhaps 18% globally), and therefore has the potential to contribute to efforts to reduce emissions as a means of minimising the risk of dangerous climate change. The largest contributions to emissions are attributed to ruminant methane production and nitrous oxide from animal waste and fertilised soils. Further, livestock, including ruminants, are an important component of global and Australian food production and there is a growing demand for animal protein sources. At the same time as governments and the community strengthen objectives to reduce greenhouse gas emissions, there are growing concerns about global food security. This paper provides an overview of a number of options for reducing methane and nitrous oxide emissions from ruminant production systems in Australia, while maintaining productivity to contribute to both objectives. Options include strategies for feed modification, animal breeding and herd management, rumen manipulation and animal waste and fertiliser management. Using currently available strategies, some reductions in emissions can be achieved, but practical commercially available techniques for significant reductions in methane emissions, particularly from extensive livestock production systems, will require greater time and resource investment. Decreases in the levels of emissions from these ruminant systems (i.e., the amount of emissions per unit of product such as meat) have already been achieved. However, the technology has not yet been developed for eliminating production of methane from the rumen of cattle and sheep digesting the cellulose and lignin-rich grasses that make up a large part of the diet of animals grazing natural pastures, particularly in arid and semi-arid grazing lands. Nevertheless, the abatement that can be achieved will contribute significantly towards reaching greenhouse gas emissions reduction targets and research will achieve further advances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land-use change, particularly clearing of forests for agriculture, has contributed significantly to the observed rise in atmospheric carbon dioxide concentration. Concern about the impacts on climate has led to efforts to monitor and curtail the rapid increase in concentrations of carbon dioxide and other greenhouse gases in the atmosphere. Internationally, much of the current focus is on the Kyoto Protocol to the United Nations Framework Convention on Climate Change (UNFCCC). Although electing to not ratify the Protocol, Australia, as a party to the UNFCCC, reports on national greenhouse gas emissions, trends in emissions and abatement measures. In this paper we review the complex accounting rules for human activities affecting greenhouse gas fluxes in the terrestrial biosphere and explore implications and potential opportunities for managing carbon in the savanna ecosystems of northern Australia. Savannas in Australia are managed for grazing as well as for cultural and environmental values against a background of extreme climate variability and disturbance, notably fire. Methane from livestock and non-CO2 emissions from burning are important components of the total greenhouse gas emissions associated with management of savannas. International developments in carbon accounting for the terrestrial biosphere bring a requirement for better attribution of change in carbon stocks and more detailed and spatially explicit data on such characteristics of savanna ecosystems as fire regimes, production and type of fuel for burning, drivers of woody encroachment, rates of woody regrowth, stocking rates and grazing impacts. The benefits of improved biophysical information and of understanding the impacts on ecosystem function of natural factors and management options will extend beyond greenhouse accounting to better land management for multiple objectives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a three-layered framework to monitor the positioning performance requirements of Real-time Relative Positioning (RRP) systems of the Cooperative Intelligent Transport Systems (C-ITS) that support Cooperative Collision Warning (CCW) applications. These applications exploit state data of surrounding vehicles obtained solely from the Global Positioning System (GPS) and Dedicated Short-Range Communications (DSRC) units without using other sensors. To this end, the paper argues the need for the GPS/DSRC-based RRP systems to have an autonomous monitoring mechanism, since the operation of CCW applications is meant to augment safety on roads. The advantages of autonomous integrity monitoring are essential and integral to any safety-of-life system. The autonomous integrity monitoring framework proposed necessitates the RRP systems to detect/predict the unavailability of their sub-systems and of the integrity monitoring module itself, and, if available, to account for effects of data link delays and breakages of DSRC links, as well as of faulty measurement sources of GPS and/or integrated augmentation positioning systems, before the information used for safety warnings/alarms becomes unavailable, unreliable, inaccurate or misleading. Hence, a monitoring framework using a tight integration and correlation approach is proposed for instantaneous reliability assessment of the RRP systems. Ultimately, using the proposed framework, the RRP systems will provide timely alerts to users when the RRP solutions cannot be trusted or used for the intended operation.