79 resultados para wearable sensors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we report on the synthesis of caesium doped graphene oxide (GO-Cs) and its application to the development of a novel NO2 gas sensor. The GO, synthesized by oxidation of graphite through chemical treatment, was doped with Cs by thermal solid-state reaction. The samples, dispersed in DI water by sonication, have been drop-casted on standard interdigitated Pt electrodes. The response of both pristine and Cs doped GO to NO2 at room temperature is studied by varying the gas concentration. The developed GO-Cs sensor shows a higher response to NO2 than the pristine GO based sensor due to the oxygen functional groups. The detection limit measured with GO-Cs sensor is ≈90 ppb.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: In recent years, there have been investigations concerning upper-limbs kinematics by various devices. The latest generation of smartphones often includes inertial sensors with subunits which can detect inertial kinematics. The use of smartphones is presented as a convenient and portable analysis method for studying kinematics in terms of angular mobility and linear acceleration Objective: The aim of this study was to study humerus kinematics through six physical properties that correspond to angular mobility and acceleration in the three axes of space, obtained by a smartphone. Methods: This cross-sectional study recruited healthy young adult subjects. Descriptive and anthropometric independent variables related to age, gender, weight, size, and BMI were included. Six physical properties were included corresponding to two dependent variables for each of three special axes: mobility angle (degrees) and lineal acceleration (meters/seconds2), which were obtained thought the inertial measurement sensor embedded in the iPhone4 smartphone equipped with three two elements for the detection of kinematic variables: a gyroscope and an accelerometer. Apple uses an LIS302DL accelerometer in the iPhone4. The application used to obtain kinematic data was xSensor Pro, Crossbow Technology, Inc., available at the Apple AppStore. The iPhone4 has storage capacity of 20MB. The data-sampling rate was set to 32 Hz, and the data for each analytical task was transmitted as email for analysis and postprocessing The iPhone4 was placed in the right half of the body of each subject located in the middle third of the humerus slightly posterior snugly secured by a neoprene fixation belt. Tasks were explained concisely and clearly. The beginning and the end were decided by a verbal order by the researcher. Participants were placed standing, starting from neutral position, performing the following analytical tasks: 180º right shoulder abduction (eight repetitions) and, after a break of about 3 minutes, 180º right shoulder flexion (eight repetitions). Both tasks were performed with the elbow extended, wrist in neutral position and the palmar area of the hand toward the midline at the beginning and end of the movement. Results: A total of 11 subjects (8 men, 3 woman) were measured, whose mean of age was 24.7 years (SD = 4.22 years) and their average BMI was 22.64 Kg/m2 (SD = 2.29 Kg/m2). The mean of angular mobility collected by the smartphone was bigger in pitch axis for flexion (= 157.28°, SD= 12.35°) and abduction (= 151.71°, SD= 9.70°). With regard to acceleration, the highest peak mean value was shown in the Y motion axis during flexion (= 19.5°/s2, SD = 0.8°/s2) and abduction (= 19.4°/s2, SD = 0.8°/s2). Also, descriptive graphics of analytical tasks performed were obtained. Conclusions: This study shows how humerus contributes to upper-limb motion and it identified movement patterns. Therefore, it supports smartphone as a useful device to analyze upper-limb kinematics. Thanks to this study it´s possible to develop a simple application that facilitates the evaluation of the patient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin film nanostructured gas sensors typically operate at temperatures above 400°C, but lower temperature operation is highly desirable, especially for remote area field sensing as this reduces significantly power consumption. We have investigated a range of sensor materials based on both pure and doped tungsten oxide (mainly focusing on Fe-doping), deposited using both thermal evaporation and electron-beam evaporation, and using a variety of post-deposition annealing. The films show excellent sensitivity at operating temperatures as low as 150°C for detection of NO2. There is a definite relationship between the sensitivity and the crystallinity and nanostructure obtained through the deposition and heat treatment processes, as well as variations in the conductivity caused both by doping and heat treatmetn. The ultimate goal of this work is to control the sensing properties, including selectivity to specific gases through the engineering of the electronic properties and the nanostructure of the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A field oriented control (FOC) algorithm is simulated and implemented for use with a permanent magnet synchronous motor (PMSM). Rotor position is sensed using Hall effect switches on the stator because other hardware position sensors attached to the rotor may not be desirable or cost effective for certain applications. This places a limit on the resolution of position sensing – only a few Hall effect switches can be placed. In this simulation, three sensors are used and the position information is obtained at higher resolution by estimating it from the rotor dynamics, as shown in literature previously. This study compares the performance of the method with an incremental encoder using simulations. The FOC algorithm is implemented using Digital Motor Control (DMC) and IQ Texas Instruments libraries from a Simulink toolbox called Embedded Coder, and downloaded into a TI microcontroller (TMS320F28335) known as the Piccolo via Code Composer Studio (CCS).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Supported by contemporary theories of architectural aesthetics and neuro-aesthetics this paper presents a case for the use of portable fNIRS imaging in the assessment of emotional responses to spatial environments experienced by both blind and sighted. The aim of the paper is to outline the implications of fNIRS for spatial research and practice within the field of architecture, thereby suggesting a potential taxonomy of particular formations of space and affect. Empirical neurological study of affect and spatial experience from an architectural design perspective remains in many instances unchartered. Clinical research using the portable non-invasive neuro-imaging device, functional near infrared spectroscopy (fNIRS) is proving convincing in its ability to detect emotional responses to visual, spatio-auditory and task based stimuli, providing a firm basis to potentially track cortical activity in the appraisal of architectural environments. Additionally, recent neurological studies have sought to explore the manifold sensory abilities of the visually impaired to better understand spatial perception in general. Key studies reveal that early blind participants perform as well as sighted due to higher auditory and somato-sensory spatial acuity. For instance, face vision enables the visually impaired to detect environments through skin pressure, enabling at times an instantaneous impression of the layout of an unfamiliar environment. Studies also report pleasant and unpleasant emotional responses such as ‘weightedness’ or ‘claustrophobia’ within certain interior environments, revealing a deeper perceptual sensitivity then would be expected. We conclude with justification that comparative fNIRS studies between the sighted and blind concerning spatial experience have the potential to provide greater understanding of emotional responses to architectural environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the fabrication of thin films of porphyrin and metallophthalocyanine derivatives on different substrates for the optochemical detection of HCl gas and electrochemical determination of L-cysteine (CySH). Solid state gas sensor for HCl gas was fabricated by coating meso-substituted porphyrin derivatives on glass slide and examined optochemical sensing of HCl gas. The concentration of gaseous HCl was monitored from the changes in the absorbance of Soret band. Among the different porphyrin derivatives, meso- tetramesitylporphyrin (MTMP) coated film showed excellent sensitivity towards HCl and achieved a detection limit of 0.03ppm HCl. Further, we have studied the self-assembly of 1,8,15,22-tetraaminometallophthalocyanine (4α-MTAPc; M = Co and Ni) from DMF on GC electrode. The CVs for the self-assembled monolayers (SAMs) of 4α-CoIITAPc and 4α-NiIITAPc show two pairs of well-defined redox couple corresponding to metal and ring. Using the 4α-CoIITAPc SAM modified electrode, sensitive and selective detection of L-cysteine was demonstrated. Further, the SAM modified electrode also successfully separates the oxidation potentials of AA and CySH with a peak separation of 320mV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ways in which technology mediates daily activities is shifting rapidly. Global trends point toward the uptake of ambient and interactive media to create radical new ways of working, interacting and socialising. Tech giants such as Google and Apple are banking on the success of this emerging market by investing in new future focused consumer products such as Google Glass and the Apple Watch. The potential implications of ubiquitous technological interactions via tangible and ambient media have never been more real or more accessible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple modular strategy for the synthesis of profluorescent nitroxide containing polymers is described. The incorporation of an epoxide as a pendant functionality on a polymer backbone synthesized using ATRP and subsequent nucleophilic ring-opening with sodium azide gave hydroxyl and azide functionality within a 3-bond radius. Orthogonal coupling chemistry then allowed the independent attachment of fluorophore and nitroxide groups in close proximity, giving rise to a profluorescent polymer. Validation of the viability of these materials as fluorescent sensors is demonstrated through efficient fluorescence switch-on observed when the materials are exposed to a model reductant or carbon-centred radical source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Balance dysfunction is one of the most common problems in people who suffer stroke. To parameterize functional tests standardized by inertial sensors have been promoted in applied medicine. The aim of this study was to compare the kinematic variables of the Functional Reach Test (FRT) obtained by two inertial sensors placed on the trunk and lumbar region between stroke survivors (SS) and healthy older adults (HOA) and to analyze the reliability of the kinematic measurements obtained. Methods Cross-sectional study. Five SS and five HOA over 65. A descriptive analysis of the average range as well as all kinematic variables recorded was developed. The intrasubject and intersubject reliability of the measured variables was directly calculated. Results In the same intervals, the angular displacement was greater in the HOA group; however, they were completed at similar times for both groups, and HOA conducted the test at a higher speed and greater acceleration in each of the intervals. The SS values were higher than HOA values in the maximum and minimum acceleration in the trunk and in the lumbar region. Conclusions The SS show less functional reach, a narrower, slower and less accelerated movement during the FRT execution, but with higher peaks of acceleration and speed when they are compared with HOA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses some of the sensing technologies and control approaches available for guiding robot manipulators for a class of underground mining tasks including drilling jumbos, bolting arms, shotcreters or explosive chargers. Data acquired with such sensors, in the laboratory and underground, is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and purpose There are no published studies on the parameterisation and reliability of the single-leg stance (SLS) test with inertial sensors in stroke patients. Purpose: to analyse the reliability (intra-observer/inter-observer) and sensitivity of inertial sensors used for the SLS test in stroke patients. Secondary objective: to compare the records of the two inertial sensors (trunk and lumbar) to detect any significant differences in the kinematic data obtained in the SLS test. Methods Design: cross-sectional study. While performing the SLS test, two inertial sensors were placed at lumbar (L5-S1) and trunk regions (T7–T8). Setting: Laboratory of Biomechanics (Health Science Faculty - University of Málaga). Participants: Four chronic stroke survivors (over 65 yrs old). Measurement: displacement and velocity, Rotation (X-axis), Flexion/Extension (Y-axis), Inclination (Z-axis); Resultant displacement and velocity (V): RV=(Vx2+Vy2+Vz2)−−−−−−−−−−−−−−−−−√ Along with SLS kinematic variables, descriptive analyses, differences between sensors locations and intra-observer and inter-observer reliability were also calculated. Results Differences between the sensors were significant only for left inclination velocity (p = 0.036) and extension displacement in the non-affected leg with eyes open (p = 0.038). Intra-observer reliability of the trunk sensor ranged from 0.889-0.921 for the displacement and 0.849-0.892 for velocity. Intra-observer reliability of the lumbar sensor was between 0.896-0.949 for the displacement and 0.873-0.894 for velocity. Inter-observer reliability of the trunk sensor was between 0.878-0.917 for the displacement and 0.847-0.884 for velocity. Inter-observer reliability of the lumbar sensor ranged from 0.870-0.940 for the displacement and 0.863-0.884 for velocity. Conclusion There were no significant differences between the kinematic records made by an inertial sensor during the development of the SLS testing between two inertial sensors placed in the lumbar and thoracic regions. In addition, inertial sensors. Have the potential to be reliable, valid and sensitive instruments for kinematic measurements during SLS testing but further research is needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a proof of concept for multi-rotor localised surveillance using a multi-spectral sensor for plant biosecurity applications. A literature review was conducted on previous applications using airborne multispectral imaging for plant biosecurity purposes. A ready built platform was purchased and modified in order to fit and provide suitable clearance for a Tetracam Mini-MCA multispectral camera. The appropriate risk management documents were developed allowing the platform and the multi-spectral camera to be tested extensively. However, due to technical difficulties with the platform the Mini- MCA was not mounted to the platform. Once a suitable platform is developed, future extensions can be conducted into the suitability of the Mini-MCA for airborne surveillance of Australian crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A biocompatible method for fabricating three-dimensional photonic crystals opens up unique opportunities for structurally coloured biodegradable materials, but also for implantable biosensing and targeted therapeutics on the microscale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent interest in affect and the body have mobilized a contemporary review of aesthetics and phenomenology within architecture to unpack how environments affect spatial experience. Emerging spatial studies within the neuro-sciences, and their implications for architectural research as raised by architectural theorists Juhani Pallasmaa (2014) and Harry Mallgrave (2013) has been well supported by a raft of scientists and institutions including the prestigious Salk Institute. Although there has been some headway in spatial studies of the vision impaired (Cattaneo et al, 2011) to understand the role of their non-visual systems in assisting navigation and location, little is discussed in terms of their other abilities in sensing particular qualities of space which impinge upon emotion. This paper reviews a collection of studies exploring face vision and echo-location, amongst others, which provide insight into what might be termed affective perception of the vision impaired, and how further interplay between this research and the architectural field can contribute new knowledge regarding space and affect. By engaging with themes from the Aesthetics, Phenomenology and indeed Neuro-science fields, the paper provides background of current and potential cross disciplinary research, and highlights the role wearable technologies can play in enhancing knowledge of affective spatial experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artist statement – Artisan Gallery I have a confession to make… I don’t wear a FitBit, I don’t want an Apple Watch and I don’t like bling LED’s. But, what excites me is a future where ‘wearables’ are discreet, seamless and potentially one with our body. Burgeoning E-textiles research will provide the ability to inconspicuously communicate, measure and enhance human health and well-being. Alongside this, next generation wearables arguably will not be worn on the body, but rather within the body…under the skin. ‘Under the Skin’ is a polemic piece provoking debate on the future of wearables – a place where they are not overt, not auxiliary and perhaps not apparent. Indeed, a future where wearables are under the skin or one with our apparel. And, as underwear closets the skin and is the most intimate and cloaked apparel item we wear, this work unashamedly teases dialogue to explore how wearables can transcend from the overt to the unseen. Context Wearable Technology, also referred to as wearable computing or ‘wearables’, is an embryonic field that has the potential to unsettle conventional notions as to how technology can interact, enhance and augment the human body. Wearable technology is the next-generation for ubiquitous consumer electronics and ‘Wearables’ are, in essence, miniature electronic devices that are worn by a person, under clothing, embedded within clothing/textiles, on top of clothing, or as stand-alone accessories/devices. This wearables market is predicted to grow somewhere between $30-$50 billion in the next 5 years (Credit Suisse, 2013). The global ‘wearables’ market, which is emergent in phase, has forecasted predictions for vast consumer revenue with the potential to become a significant cross-disciplinary disruptive space for designers and entrepreneurs. For Fashion, the field of wearables is arguably at the intersection of the second and third generation for design innovation: the first phase being purely decorative with aspects such as LED lighting; the second phase consisting of an array of wearable devices, such as smart watches, to communicate areas such as health and fitness, the third phase involving smart electronics that are woven into the textile to perform a vast range of functions such as body cooling, fabric colour change or garment silhouette change; and the fourth phase where wearable devices are surgically implanted under the skin to augment, transform and enhance the human body. Whilst it is acknowledged the wearable phases are neither clear-cut nor discreet in progression and design innovation can still be achieved with first generation decorative approaches, the later generation of technology that is less overt and at times ‘under the skin’ provides a uniquely rich point for design innovation where the body and technology intersect as one. With this context in mind, the wearable provocation piece ‘Under the Skin’ provides a unique opportunity for the audience to question and challenge conventional notions that wearables need to be a: manifest in nature, b: worn on or next to the body, and c: purely functional. The piece ‘Under the Skin’ is informed by advances in the market place for wearable innovation, such as: the Australian based wearable design firm Catapult with their discreet textile biometric sports tracking innovation, French based Spinali Design with their UV app based textile senor to provide sunburn alerts, as well as opportunities for design technology innovation through UNICEF’s ‘Wearables for Good’ design challenge to improve the quality of life in disadvantaged communities. Exhibition As part of Artisan’s Wearnext exhibition, the work was on public display from 25 July to 7 November 2015 and received the following media coverage: WEARNEXT ONLINE LISTINGS AND MEDIA COVERAGE: http://indulgemagazine.net/wear-next/ http://www.weekendnotes.com/wear-next-exhibition-gallery-artisan/ http://concreteplayground.com/brisbane/event/wear-next_/ http://www.nationalcraftinitiative.com.au/news_and_events/event/48/wear-next http://bneart.com/whats-on/wear-next_/ http://creativelysould.tumblr.com/post/124899079611/creative-weekend-art-edition http://www.abc.net.au/radionational/programs/breakfast/smartly-dressed-the-future-of-wearable-technology/6744374 http://couriermail.newspaperdirect.com/epaper/viewer.aspx RADIO COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 TELEVISION COVERAGE http://www.abc.net.au/radionational/programs/breakfast/wear-next-exhibition-whats-next-for-wearable-technology/6745986 https://au.news.yahoo.com/video/watch/29439742/how-you-could-soon-be-wearing-smart-clothes/#page1