86 resultados para utilization of waste
Resumo:
Population increase and economic developments can lead to construction as well as demolition of infrastructures such as buildings, bridges, roads, etc resulting in used concrete as a primary waste product. Recycling of waste concrete to obtain the recycled concrete aggregates (RCA) for base and/or sub-base materials in road construction is a foremost application to be promoted to gain economical and sustainability benefits. As the mortar, bricks, glass and reclaimed asphalt pavement (RAP) present as constituents in RCA, it exhibits inconsistent properties and performance. In this study, six different types of RCA samples were subjected classification tests such as particle size distribution, plasticity, compaction test, unconfined compressive strength (UCS) and California bearing ratio (CBR) tests. Results were compared with those of the standard road materials used in Queensland, Australia. It was found that material type ‘RM1-100/RM3-0’ and ‘RM1-80/RM3-20’ samples are in the margin of the minimum required specifications of base materials used for high volume unbound granular roads while others are lower than that the minimum requirement.
Resumo:
Methanesulfonic acid (MSA) was compared with sulfuric acid for the conversion of glucose and xylose mixtures to produce levulinic acid and furfural. The interactions of glucose and xylose, the predominant sugars found in biomass, were found to influence product yields with furfural degradation reactions enhanced under higher reactant loadings. Fast heating rates allowed maximal yields (>60 mol%) of levulinic acid and furfural to be achieved under short reaction times. Under the range of conditions examined, sulfuric acid produced a slight increase in levulinic acid yield by 6% (P = 0.02), although there was no significant difference (P = 0.11) between MSA and sulfuric acid in levulinic acid formed from glucose alone. The amount and type of the solid residue is similar between MSA and sulfuric acid. As such, MSA is a suitable alternative because its use minimizes corrosion and disposal issues associated with mineral acid catalysts. The heating value of the residue was 22 MJ/kg implying that it is a suitable source of fuel. On the basis of these results, a two-stage processing strategy is proposed to target high levulinic acid and furfural yields, and other chemical products (e.g., lactic acid, xylitol, acetic acid and formic acid). This will result in full utilization of bagasse components.
Resumo:
In this paper, we explore how BIM functionalities together with novel management concepts and methods have been utilized in thirteen hospital projects in the United States and the United Kingdom. Secondary data collection and analysis were used as the method. Initial findings indicate that the utilization of BIM enables a holistic view of project delivery and helps to integrate project parties into a collaborative process. The initiative to implement BIM must come from the top down to enable early involvement of all key stakeholders. It seems that it is rather resistance from people to adapt to the new way of working and thinking than immaturity of technology that hinders the utilization of BIM.
Resumo:
The ineffectiveness of current design processes has been well studied and has resulted in widespread calls for the evolution and development of new management processes. Even following the advent of BIM, we continue to move from one stage to another without necessarily having resolved all the issues. CAD design technology, if well handled, could have significantly raised the level of quality and efficiency of current processes, but in practice this was not fully realized. Therefore, technology alone can´t solve all the problems and the advent of BIM could result in a similar bottleneck. For a precise definition of the problem to be solved we should start by understanding what are the main current bottlenecks that have yet to be overcome by either new technologies or management processes, and the impact of human behaviour-related issues which impact the adoption and utilization of new technologies. The fragmented and dispersed nature of the AEC sector, and the huge number of small organizations that comprise it, are a major limiting factor. Several authors have addressed this issue and more recently IDDS has been defined as the highest level of achievement. However, what is written on IDDS shows an extremely ideal situation on a state to be achieved; it shows a holistic utopian proposition with the intent to create the research agenda to move towards that state. Key to IDDS is the framing of a new management model which should address the problems associated with key aspects: technology, processes, policies and people. One of the primary areas to be further studied is the process of collaborative work and understanding, together with the development of proposals to overcome the many cultural barriers that currently exist and impede the advance of new management methods. The purpose of this paper is to define and delimit problems to be solved so that it is possible to implement a new management model for a collaborative design process.
Resumo:
Background Although PPARγ antagonists have shown considerable pre-clinical efficacy, recent studies suggest PPARγ ligands induce PPARγ-independent effects. There is a need to better define such effects to permit rational utilization of these agents. Methods We have studied the effects of a range of endogenous and synthetic PPARγ ligands on proliferation, growth arrest (FACS analysis) and apoptosis (caspase-3/7 activation and DNA fragmentation) in multiple prostate carcinoma cell lines (DU145, PC-3 and LNCaP) and in a series of cell lines modelling metastatic transitional cell carcinoma of the bladder (TSU-Pr1, TSU-Pr1-B1 and TSU-Pr1-B2). Results 15-deoxy-prostaglandin J2 (15dPGJ2), troglitazone (TGZ) and to a lesser extent ciglitazone exhibited inhibitory effects on cell number; the selective PPARγ antagonist GW9662 did not reverse these effects. Rosiglitazone and pioglitazone had no effect on proliferation. In addition, TGZ induced G0/G1 growth arrest whilst 15dPGJ2 induced apoptosis. Conclusion Troglitazone and 15dPGJ2 inhibit growth of prostate and bladder carcinoma cell lines through different mechanisms and the effects of both agents are PPARγ-independent.
Resumo:
For users of germplasm collections, the purpose of measuring characterization and evaluation descriptors, and subsequently using statistical methodology to summarize the data, is not only to interpret the relationships between the descriptors, but also to characterize the differences and similarities between accessions in relation to their phenotypic variability for each of the measured descriptors. The set of descriptors for the accessions of most germplasm collections consists of both numerical and categorical descriptors. This poses problems for a combined analysis of all descriptors because few statistical techniques deal with mixtures of measurement types. In this article, nonlinear principal component analysis was used to analyze the descriptors of the accessions in the Australian groundnut collection. It was demonstrated that the nonlinear variant of ordinary principal component analysis is an appropriate analytical tool because subspecies and botanical varieties could be identified on the basis of the analysis and characterized in terms of all descriptors. Moreover, outlying accessions could be easily spotted and their characteristics established. The statistical results and their interpretations provide users with a more efficient way to identify accessions of potential relevance for their plant improvement programs and encourage and improve the usefulness and utilization of germplasm collections.
Resumo:
A system requiring a waste management license from an enforcement agency has been introduced in many countries. A license system is usually coupled with fines, a manifest, and a disposal tax. However, these policy devices have not been integrated into an optimal policy. In this paper we derive an optimal waste management policy by using those policy devices. Waste management policies are met with three difficult problems: asymmetric information, the heterogeneity of waste management firms, and non-compliance by waste management firms and waste disposers. The optimal policy in this paper overcomes all three problems.
Resumo:
Annually, several million tonnes of waste are produced from reworks, demolition, and use of substandard materials. Building Information Modelling (BIM), a digital representation of facilities and their constituent data, is a viable means of addressing some concerns about the impacts of these processes. BIM functionalities can be extended and combined with rich building information from specifications and product libraries, for efficient, streamlined design and construction. This paper conceptualises a framework for BIM-knowledge transfer from advanced economies for adaptation and use in urban development works in developing nations using the Sydney Down Under and Lagos Eko Atlantic projects as reference points. We present a scenario that highlights BIM-based lifecycle planning/specifications as agents of sustainable construction (in terms of cost and time) crucial to the quality of as-built data from early on in city development. We show how, through the use of BIM, city planners in developing nations can avoid high, retrospective (and sometimes wasteful) maintenance costs and leapfrog infrastructure management standards of advanced economies. Finally, this paper illustrates how BIM can address concerns about economic sustainability during city development in developing countries by enriching model objects with specification information sourced from a product library.
Resumo:
Traditional towns of the Kathmandu Valley boast a fine provision of public spaces in their neighbourhoods. Historically, a hierarchy of public space has been distributed over the entire town with each neighbourhood centered around more or less spacious public squares. However, rapid growth of these towns over the past decades has resulted in haphazard development of new urban areas with little provision of public space. Recent studies indicate that the loss of public space is a major consequence of the uncontrolled urban growth of the Kathmandu Valley and its new neighbourhoods. This paper reviews the current urban growth of the Kathmandu Valley and its impact on the development of public space in new neighbourhoods. The preliminary analysis of the case study of three new neighbourhoods shows that the formation and utilization of neighbourhood public space exhibit fundamental differences from those found in the traditional city cores. The following key issues are identified in this paper: a) Governance and regulations have been a challenge to regulate rapid urban growth; b) The current pattern of neighbourhood formation is found to be different from that of traditional neighbourhoods due to the changes with rapid urban development; c) Public spaces have been compromised in both planned and unplanned new neighbourhoods in terms of their quantity and quality; d) The changing provision of public space has contributed to its changing use and meaning; and e) The changing demographic composition, changing society and life style have had direct impact on the declining use of public space. Moreover, the management of public spaces remains a big challenge due to their changing nature and the changing governance. The current transformation public space does not appear to be conducive, and has led to adversely changing social environment of the new neighbourhoods.
Resumo:
Research problem: Overfitting and collinearity problems commonly exist in current construction cost estimation applications and obstruct researchers and practitioners in achieving better modelling results. Research objective and method: A hybrid approach of Akaike information criterion (AIC) stepwise regression and principal component regression (PCR) is proposed to help solve overfitting and collinearity problems. Utilization of this approach in linear regression is validated by comparing it with other commonly used approaches. The mean square error obtained by leave-one-out cross validation (MSELOOCV) is used in model selection in deciding predictive variables.
Resumo:
This paper challenges the assumptions underlying many reviews and offers alternative criteria for examining evidence for nonpharmacological interventions. We evaluated 27 reviews examining interventions for persons with dementia as they relate to the issues of selection based on randomized controlled trial (RCT) design. Reviews were described by type of intervention, level of cognitive function, and criteria for inclusion. Of the 27 reviews, 46% required RCTs for inclusion and most had stringent inclusion criteria. This resulted in poor utilization of the literature and low ecological validity. Eliminating most of the available data poses a critical problem to clinical and research development. Studies meeting strict methodological criteria may not generalize to the greater population or may exclude sub-populations and interventions. Limitations of double-blind RCTs and potential design solutions are set forth based on appropriate populations, problems, interventions, and settings characteristics.
Resumo:
Enhancing quality of food products and reducing volume of waste during mechanical operations of food industry requires a comprehensive knowledge of material response under loadings. While research has focused on mechanical response of food material, the volume of waste after harvesting and during processing stages is still considerably high in both developing and developed countries. This research aims to develop and evaluate a constitutive model of mechanical response of tough skinned vegetables under postharvest and processing operations. The model focuses on both tensile and compressive properties of pumpkin flesh and peel tissues where the behaviours of these tissues vary depending on various factors such as rheological response and cellular structure. Both elastic and plastic response of tissue were considered in the modelling process and finite elasticity combined with pseudo elasticity theory was applied to generate the model. The outcomes were then validated using the published results of experimental work on pumpkin flesh and peel under uniaxial tensile and compression. The constitutive coefficients for peel under tensile test was α = 25.66 and β = −18.48 Mpa and for flesh α = −5.29 and β = 5.27 Mpa. under compression the constitutive coefficients were α = 4.74 and β = −1.71 Mpa for peel and α = 0.76 and β = −1.86 Mpa for flesh samples. Constitutive curves predicted the values of force precisely and close to the experimental values. The curves were fit for whole stress versus strain curve as well as a section of curve up to bio yield point. The modelling outputs had presented good agreement with the empirical values and the constructive curves exhibited a very similar pattern to the experimental curves. The presented constitutive model can be applied next to other agricultural materials under loading in future.
Resumo:
Office building retrofit is a sector being highlighted in Australia because of the mature office building market characterised by a large proportion of ageing properties. The increasing number of office building retrofit projects strengthens the need for waste management. Retrofit projects possess unique characteristics in comparison to traditional demolition and new builds such as partial operation of buildings, constrained site spaces and limited access to as-build information. Waste management activities in retrofit projects can be influenced by issues that are different from traditional construction and demolition projects. However, previous research on building retrofit projects has not provided an understanding of the critical issues affecting waste management. This research identifies the critical factors which influence the management of waste in office building retrofit projects through a literature study and a questionnaire survey to industry practitioners. Statistical analysis on a range of potential waste issues reveals the critical factors, as agreed upon by survey respondents in consideration of their different professional responsibilities and work natures. The factors are grouped into five dimensions, comprising industry culture, organisational support and incentive, existing building information, design, and project delivery process. The discussions of the dimensions indicate that the waste management factors of office building retrofit projects are further intensified compared to those for general demolition and construction because retrofit projects involve existing buildings which are partially operating with constrained work space and limited building information. Recommendations for improving waste management in office building retrofit projects are generalised such as waste planning, auditing and assessment in the planning and designing stage, collaboration and coordination of various stakeholders and different specialists, optimised building surveying and BIM technologies for waste analysis, and new design strategies for waste prevention.
Resumo:
In this study, the biodiesel properties and effects of blends of oil methyl ester petroleum diesel on a CI direct injection diesel engine is investigated. Blends were obtained from the marine dinoflagellate Crypthecodinium cohnii and waste cooking oil. The experiment was conducted using a four-cylinder, turbo-charged common rail direct injection diesel engine at four loads (25%, 50%, 75% and 100%). Three blends (10%, 20% and 50%) of microalgae oil methyl ester and a 20% blend of waste cooking oil methyl ester were compared to petroleum diesel. To establish suitability of the fuels for a CI engine, the effects of the three microalgae fuel blends at different engine loads were assessed by measuring engine performance, i.e. mean effective pressure (IMEP), brake mean effective pressure (BMEP), in cylinder pressure, maximum pressure rise rate, brake-specific fuel consumption (BSFC), brake thermal efficiency (BTE), heat release rate and gaseous emissions (NO, NOx,and unburned hydrocarbons (UHC)). Results were then compared to engine performance characteristics for operation with a 20% waste cooking oil/petroleum diesel blend and petroleum diesel. In addition, physical and chemical properties of the fuels were measured. Use of microalgae methyl ester reduced the instantaneous cylinder pressure and engine output torque, when compared to that of petroleum diesel, by a maximum of 4.5% at 50% blend at full throttle. The lower calorific value of the microalgae oil methyl ester blends increased the BSFC, which ultimately reduced the BTE by up to 4% at higher loads. Minor reductions of IMEP and BMEP were recorded for both the microalgae and the waste cooking oil methyl ester blends at low loads, with a maximum of 7% reduction at 75% load compared to petroleum diesel. Furthermore, compared to petroleum diesel, gaseous emissions of NO and NOx, increased for operations with biodiesel blends. At full load, NO and NOx emissions increased by 22% when 50% microalgae blends were used. Petroleum diesel and a 20% blend of waste cooking oil methyl ester had emissions of UHC that were similar, but those of microalgae oil methyl ester/petroleum diesel blends were reduced by at least 50% for all blends and engine conditions. The tested microalgae methyl esters contain some long-chain, polyunsaturated fatty acid methyl esters (FAMEs) (C22:5 and C22:6) not commonly found in terrestrial-crop-derived biodiesels yet all fuel properties were satisfied or were very close to the ASTM 6751-12 and EN14214 standards. Therefore, Crypthecodinium cohnii- derived microalgae biodiesel/petroleum blends of up to 50% are projected to meet all fuel property standards and, engine performance and emission results from this study clearly show its suitability for regular use in diesel engines.
Resumo:
The development of a protein-mediated dual functional affinity adsorption of plasmid DNA is described in this work. The affinity ligand for the plasmid DNA comprises a fusion protein with glutathione-S-transferase (GST) as the fusion partner with a zinc finger protein. The protein ligand is first bound to the adsorbent by affinity interaction between the GST moeity and gluthathione that is covalently immobilized to the base matrix. The plasmid binding is then enabled via the zinc finger protein and a specific nucleotide sequence inserted into the DNA. At lower loadings, the binding of the DNA onto the Fractogel, Sepharose, and Streamline matrices was 0.0078 ± 0.0013, 0.0095 ± 0.0016, and 0.0080 ± 0.0006 mg, respectively, to 50 μL of adsorbent. At a higher DNA challenge, the corresponding amounts were 0.0179 ± 0.0043, 0.0219 ± 0.0035, and 0.0190 ± 0.0041 mg, respectively. The relatively constant amounts bound to the three adsorbents indicated that the large DNA molecule was unable to utilize the available zinc finger sites that were located in the internal pores and binding was largely a surface adsorption phenomenon. Utilization of the zinc finger binding sites was shown to be highest for the Fractogel adsorbent. The adsorbed material was eluted with reduced glutathione, and the eluted efficiency for the DNA was between 23% and 27%. The protein elution profile appeared to match the adsorption profiles with significantly higher recoveries of bound GST-zinc finger protein.