123 resultados para textiles manufacturing
Resumo:
Design for Manufacturing (DFM) is a highly integral methodology in product development, starting from the concept development phase, with the aim of improving manufacturing productivity. It is used to reduce manufacturing costs in complex production environments, while maintaining product quality. While Design for Assembly (DFA) is focusing on elimination or combination of parts with other components, which in most cases relates to performing a function and manufacture operation in a simpler way, DFM is following a more holistic approach. Common consideration for DFM are standard components, manufacturing tool inventory and capability, materials compatibility with production process, part handling, logistics, tool wear and process optimization, quality control complexity or Poka-Yoke design. During DFM, the considerable background work required for the conceptual phase is compensated for by a shortening of later development phases. Current DFM projects normally apply an iterative step-by-step approach and eventually transfer to the developer team. The study is introducing a new, knowledge based approach to DFM, eliminating steps of DFM, and showing implications on the work process. Furthermore, a concurrent engineering process via transparent interface between the manufacturing engineering and product development systems is brought forward.
Resumo:
Digital human modelling (DHM) has today matured from research into industrial application. In the automotive domain, DHM has become a commonly used tool in virtual prototyping and human-centred product design. While this generation of DHM supports the ergonomic evaluation of new vehicle design during early design stages of the product, by modelling anthropometry, posture, motion or predicting discomfort, the future of DHM will be dominated by CAE methods, realistic 3D design, and musculoskeletal and soft tissue modelling down to the micro-scale of molecular activity within single muscle fibres. As a driving force for DHM development, the automotive industry has traditionally used human models in the manufacturing sector (production ergonomics, e.g. assembly) and the engineering sector (product ergonomics, e.g. safety, packaging). In product ergonomics applications, DHM share many common characteristics, creating a unique subset of DHM. These models are optimised for a seated posture, interface to a vehicle seat through standardised methods and provide linkages to vehicle controls. As a tool, they need to interface with other analytic instruments and integrate into complex CAD/CAE environments. Important aspects of current DHM research are functional analysis, model integration and task simulation. Digital (virtual, analytic) prototypes or digital mock-ups (DMU) provide expanded support for testing and verification and consider task-dependent performance and motion. Beyond rigid body mechanics, soft tissue modelling is evolving to become standard in future DHM. When addressing advanced issues beyond the physical domain, for example anthropometry and biomechanics, modelling of human behaviours and skills is also integrated into DHM. Latest developments include a more comprehensive approach through implementing perceptual, cognitive and performance models, representing human behaviour on a non-physiologic level. Through integration of algorithms from the artificial intelligence domain, a vision of the virtual human is emerging.
Resumo:
This paper seeks to explain the lagging productivity in Singapore’s manufacturing noted in the statements of the Economic Strategies Committee Report 2010. Two methods are employed: the Malmquist productivity to measure total factor productivity change and Simar and Wilson’s (J Econ, 136:31–64, 2007) bootstrapped truncated regression approach. In the first stage, the nonparametric data envelopment analysis is used to measure technical efficiency. To quantify the economic drivers underlying inefficiencies, the second stage employs a bootstrapped truncated regression whereby bias-corrected efficiency estimates are regressed against explanatory variables. The findings reveal that growth in total factor productivity was attributed to efficiency change with no technical progress. Most industries were technically inefficient throughout the period except for ‘Pharmaceutical Products’. Sources of efficiency were attributed to quality of worker and flexible work arrangements while incessant use of foreign workers lowered efficiency.
Resumo:
The Six Sigma technique is one of the quality management strategies and is utilised for improving the quality and productivity in the manufacturing process. It is inspired by the two major project methodologies of Deming’s "Plan – Do – Check – Act (PDCA)" Cycle which consists of DMAIC and DMADV. Those two methodologies are comprised of five phases. The DMAIC project methodology will be comprehensively used in this research. In brief, DMAIC is utilised for improving the existing manufacturing process and it involves the phases Define, Measure, Analyse, Improve, and Control. Mask industry has become a significant industry in today’s society since the outbreak of some serious diseases such as the Severe Acute Respiratory Syndrome (SARS), bird flu, influenza, swine flu and hay fever. Protecting the respiratory system, then, has become the fundamental requirement for preventing respiratory deceases. Mask is the most appropriate and protective product inasmuch as it is effective in protecting the respiratory tract and resisting the virus infection through air. In order to satisfy various customers’ requirements, thousands of mask products are designed in the market. Moreover, masks are also widely used in industries including medical industries, semi-conductor industries, food industries, traditional manufacturing, and metal industries. Notwithstanding the quality of masks have become the prioritisations since they are used to prevent dangerous diseases and safeguard people, the quality improvement technique are of very high significance in mask industry. The purpose of this research project is firstly to investigate the current quality control practices in a mask industry, then, to explore the feasibility of using Six Sigma technique in that industry, and finally, to implement the Six Sigma technique in the case company to develop and evaluate the product quality process. This research mainly investigates the quality problems of musk industry and effectiveness of six sigma technique in musk industry with the United Excel Enterprise Corporation (UEE) Company as a case company. The DMAIC project methodology in the Six Sigma technique is adopted and developed in this research. This research makes significant contribution to knowledge. The main results contribute to the discovering the root causes of quality problems in a mask industry. Secondly, the company was able to increase not only acceptance rate but quality level by utilising the Six Sigma technique. Hence, utilising the Six Sigma technique could increase the production capacity of the company. Third, the Six Sigma technique is necessary to be extensively modified to improve the quality control in the mask industry. The impact of the Six Sigma technique on the overall performance in the business organisation should be further explored in future research.
Resumo:
Additive manufacturing techniques offer the potential to fabricate organized tissue constructs to repair or replace damaged or diseased human tissues and organs. Using these techniques, spatial variations of cells along multiple axes with high geometric complexity in combination with different biomaterials can be generated. The level of control offered by these computer-controlled technologies to design and fabricate tissues will accelerate our understanding of the governing factors of tissue formation and function. Moreover, it will provide a valuable tool to study the effect of anatomy on graft performance. In this review, we discuss the rationale for engineering tissues and organs by combining computer-aided design with additive manufacturing technologies that encompass the simultaneous deposition of cells and materials. Current strategies are presented, particularly with respect to limitations due to the lack of suitable polymers, and requirements to move the current concepts to practical application.
Resumo:
Peeling is an essential phase of post harvesting and processing industry; however undesirable processing losses are unavoidable and always have been the main concern of food processing sector. There are three methods of peeling fruits and vegetables including mechanical, chemical and thermal, depending on the class and type of fruit. By comparison, the mechanical methods are the most preferred; mechanical peeling methods do not create any harmful effects on the tissue and they keep edible portions of produce fresh. The main disadvantage of mechanical peeling is the rate of material loss and deformations. Obviously reducing material losses and increasing the quality of the process has a direct effect on the whole efficiency of food processing industry, this needs more study on technological aspects of these operations. In order to enhance the effectiveness of food industrial practices it is essential to have a clear understanding of material properties and behaviour of tissues under industrial processes. This paper presents the scheme of research that seeks to examine tissue damage of tough skinned vegetables under mechanical peeling process by developing a novel FE model of the process using explicit dynamic finite element analysis approach. A computer model of mechanical peeling process will be developed in this study to stimulate the energy consumption and stress strain interactions of cutter and tissue. The available Finite Element softwares and methods will be applied to establish the model. Improving the knowledge of interactions and involves variables in food operation particularly in peeling process is the main objectives of the proposed study. Understanding of these interrelationships will help researchers and designer of food processing equipments to develop new and more efficient technologies. Presented work intends to review available literature and previous works has been done in this area of research and identify current gap in modelling and simulation of food processes.
Resumo:
The following paper presents insights found during an ongoing industry engagement with a family-owned manufacturing SME in Australia. The initial findings presented as a case study look at the opportunities available to the firm engaging in a design led approach to innovation. Over the period of one year, the first author’s immersion within the firm seeks to unpack the cultural, strategic, product opportunities and challenges when adopting design led innovation. This can provide a better understanding of how a firm can more effectively assess their value proposition in the market and what factors of the business are imperative in stimulating competitive difference. The core insight identified from this paper is that design led innovation cannot be seen and treated as a discrete event, nor a series of steps or stages; rather the whole business model needs to be in focus to achieve holistic, sustainable innovation. Initial insights were found through qualitative interviews with internal employees including: overcoming silos; moving from reactive to proactive design; empowerment; vision for growth and the framing of innovation.
Resumo:
To investigate the effects of adopting a pull system in assembly lines in contrast to a push system, simulation software called “ARENA” is used as a tool in order to present numerical results from both systems. Simulation scenarios are created to evaluate the effects of attributes changing in assembly systems, with influential factors including the change of manufacturing system (push system to pull system) and variation of demand. Moreover, pull system manufacturing consists of the addition attribute, which is the number of buffer storage. This paper will provide an analysis based on a previous case study, hence process time and workflow refer to the journal name “Optimising and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study” [2]. The implementation of the pull system mechanism is to produce a system improvement in terms of the number of Work-In-Process (WIP), total time of products in the system, and the number of finished product inventory, while retaining the same throughput.
Resumo:
Today’s highly competitive market influences the manufacturing industry to improve their production systems to become the optimal system in the shortest cycle time as possible. One of most common problems in manufacturing systems is the assembly line balancing problem. The assembly line balancing problem involves task assignments to workstations with optimum line efficiency. The line balancing technique, namely “COMSOAL”, is an abbreviation of “Computer Method for Sequencing Operations for Assembly Lines”. Arcus initially developed the COMSOAL technique in 1966 [1], and it has been mainly applied to solve assembly line balancing problems [6]. The most common purposes of COMSOAL are to minimise idle time, optimise production line efficiency, and minimise the number of workstations. Therefore, this project will implement COMSOAL to balance an assembly line in the motorcycle industry. The new solution by COMSOAL will be used to compare with the previous solution that was developed by Multi‐Started Neighborhood Search Heuristic (MSNSH), which will result in five aspects including cycle time, total idle time, line efficiency, average daily productivity rate, and the workload balance. The journal name “Optimising and simulating the assembly line balancing problem in a motorcycle manufacturing company: a case study” will be used as the case study for this project [5].
Resumo:
The automotive industry has been the focus of digital human modeling (DHM) research and application for many years. In the highly competitive marketplace for personal transportation, the desire to improve the customer’s experience has driven extensive research in both the physical and cognitive interaction between the vehicle and its occupants. Human models provide vehicle designers with tools to view and analyze product interactions before the first prototypes are built, potentially improving the design while reducing cost and development time. The focus of DHM research and applications began with prediction and representation of static postures for purposes of driver workstation layout, including assessments of seat adjustment ranges and exterior vision. Now DHMs are used for seat design and assessment of driver reach and ingress/egress. DHMs and related simulation tools are expanding into the cognitive domain, with computational models of perception and motion, and into the dynamic domain with models of physical responses to ride and vibration. Moreover, DHMs are now widely used to analyze the ergonomics of vehicle assembly tasks. In this case, the analysis aims to determine whether workers can be expected to complete the tasks safely and with good quality. This preface provides a review of the literature to provide context for the nine new papers presented in this special issue.
Resumo:
In various industrial and scientific fields, conceptual models are derived from real world problem spaces to understand and communicate containing entities and coherencies. Abstracted models mirror the common understanding and information demand of engineers, who apply conceptual models for performing their daily tasks. However, most standardized models in Process Management, Product Lifecycle Management and Enterprise Resource Planning lack of a scientific foundation for their notation. In collaboration scenarios with stakeholders from several disciplines, tailored conceptual models complicate communication processes, as a common understanding is not shared or implemented in specific models. To support direct communication between experts from several disciplines, a visual language is developed which allows a common visualization of discipline-specific conceptual models. For visual discrimination and to overcome visual complexity issues, conceptual models are arranged in a three-dimensional space. The visual language introduced here follows and extends established principles of Visual Language science.
Resumo:
Many construction industry decision-makers believe there is a lack of off-site manufacture (OSM) adoption for non-residential construction in Australia. Identification of construction business process was considered imperative in order to assist decision-makers to increase OSM utilisation. The premise that domain knowledge can be re-used to provide an intervention point in the construction process led a team of researchers to construct simple base-line process models for the complete construction process, segmented into six phases. Sixteen domain knowledge industry experts were asked to review the construction phase base-line models to answer the question “Where in the process illustrated by this base-line model phase is an OSM task?”. Through an iterative and generative process a number of off-site manufacture intervention points were identified and integrated into the process models. The re-use of industry expert domain knowledge provided suggestions for new ways to do basic tasks thus facilitating changes to current practice. It is expected that implementation of the new processes will lead to systemic industry change and thus a growth in productivity due to increased adoption of OSM.
Resumo:
This paper investigates the critical role of knowledge sharing (KS) in leveraging manufacturing activities, namely integrated supplier management (ISM) and new product development (NPD) to improve business performance (BP) within the context of Taiwanese electronic manufacturing companies. The research adopted a sequential mixed method research design, which provided both quantitative empirical evidence as well as qualitative insights, into the moderating effect of KS on the relationships between these two core manufacturing activities and BP. First, a questionnaire survey was administered, which resulted in a sample of 170 managerial and technical professionals providing their opinions on KS, NPD and ISM activities and the BP level within their respective companies. On the basis of the collected data, factor analysis was used to verify the measurement model, followed by correlation analysis to explore factor interrelationships, and finally moderated regression analyses to extract the moderating effects of KS on the relationships of NPD and ISM with BP. Following the quantitative study, six semi-structured interviews were conducted to provide qualitative in-depth insights into the value added from KS practices to the targeted manufacturing activities and the extent of its leveraging power. Results from quantitative statistical analysis indicated that KS, NPD and ISM all have a significant positive impact on BP. Specifically, IT infrastructure and open communication were identified as the two types of KS practices that could facilitate enriched supplier evaluation and selection, empower active employee involvement in the design process, and provide support for product simplification and the modular design process, thereby improving manufacturing performance and strengthening company competitiveness. The interviews authenticated many of the empirical findings, suggesting that in the contemporary manufacturing context KS has become an integral part of many ISM and NPD activities and when embedded properly can lead to an improvement in BP. The paper also highlights a number of useful implications for manufacturing companies seeking to leverage their BP through innovative and sustained KS practices.
Resumo:
Purpose – Integrated supplier management (ISM), new product development (NPD) and knowledge sharing (KS) practices are three primary business activities utilised to enhance manufacturers' business performance (BP). The purpose of this paper is to empirically investigate the relationships between these three business activities (i.e. ISM, NPD, KS) and BP in a Taiwanese electronics manufacturing context. Design/methodology/approach – A questionnaire survey is first administered to a sample of electronic manufacturing companies operating in Taiwan to elicit the opinions of technical and managerial professionals regarding business activities and BP within their companies. A total of 170 respondents from 83 companies respond to the survey. Factor, correlation and path analysis are undertaken on this quantitative data set to derive the key factors which leverage business outcomes in these companies. Following empirical analysis, six semi-structured interviews are undertaken with manufacturing executives to provide qualitative insights into the underlying reasons why certain business activity factors are the strongest predictors of BP. Findings – The investigation shows that the ISM, NPD and KS constructs all play an important role in the success of company operations and creating business outcomes. Specifically, the key factors within these constructs which influenced BP are: supplier evaluation and selection; design simplification and modular design; information technology infrastructure and systems and open communication. Accordingly, sufficient financial and human resources should be allocated to these important activities to derive accelerated rates of improved BP. These findings are supported by the qualitative interviews with manufacturing executives. Originality/value – The paper depicts the pathways to improved manufacturing BP, through targeting efforts into the above-mentioned factors within the ISM, NPD and KS constructs. Based on the empirical path model, and the specific insights derived from the explanatory interviews with manufacturing executives, the paper also provides a number of practical implications for manufacturing companies seeking to enhance their BP through improved operational activities.