165 resultados para sputtering pressure
Resumo:
Computational Fluid Dynamics (CFD) simulations are widely used in mechanical engineering. Although achieving a high level of confidence in numerical modelling is of crucial importance in the field of turbomachinery, verification and validation of CFD simulations are very tricky especially for complex flows encountered in radial turbines. Comprehensive studies of radial machines are available in the literature. Unfortunately, none of them include enough detailed geometric data to be properly reproduced and so cannot be considered for academic research and validation purposes. As a consequence, design improvements of such configurations are difficult. Moreover, it seems that well-developed analyses of radial turbines are used in commercial software but are not available in the open literature especially at high pressure ratios. It is the purpose of this paper to provide a fully open set of data to reproduce the exact geometry of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multipurpose Small Power Unit. First, preliminary one-dimensional meanline design and analysis are performed using the commercial software RITAL from Concepts-NREC in order to establish a complete reference test case available for turbomachinery code validation. The proposed design of the existing turbine is then carefully and successfully checked against the geometrical and experimental data partially published in the literature. Then, three-dimensional Reynolds-Averaged Navier-Stokes simulations are conducted by means of the Axcent-PushButton CFDR CFD software. The effect of the tip clearance gap is investigated in detail for a wide range of operating conditions. The results confirm that the 3D geometry is correctly reproduced. It also reveals that the turbine is shocked while designed to give a high-subsonic flow and highlight the importance of the diffuser.
Resumo:
Objective: To determine the prevalence, severity, location, etiology, treatment, and healing of medical device-related pressure ulcers in intensive care patients for up to 7 days. Design: Prospective repeated measures study. Setting and participants: Patients in 6 intensive care units of 2 major medical centers, one each in Australia and the United States, were screened 1 day per month for 6 months. Those with device-related ulcers were followed daily up to 7 days. Outcome measures: Device-related ulcer prevalence, pain, infection, treatment, healing. Results: 15/483 patients had device-related ulcers and 9/15 with 11 ulcers were followed beyond screening. Their mean age was 60.5 years, most were men, over-weight, and at increased pressure ulcer risk. Endotracheal and nasogastric tubes were the cause of most device-related ulcers. Repositioning was the most frequent treatment. 4/11 ulcers healed within the 7 day observation period. Conclusion: Device-related ulcer prevalence was 3.1%, similar to that reported in the limited literature available, indicating an ongoing problem. Systematic assessment and repositioning of devices are the mainstays of care. We recommend continued prevalence determination and that nurses remain vigilant to prevent device-related ulcers, especially in patients with nasogastric and endotracheal tubes.
Resumo:
Accelerating a project can be rewarding. The consequences, however, can be troublesome if productivity and quality are sacrificed for the sake of remaining ahead of schedule, such that the actual schedule benefits are often barely worth the effort. The tradeoffs and paths of schedule pressure and its causes and effects are often overlooked when schedule decisions are being made. This paper analyses the effects that schedule pressure has on construction performance, and focuses on tradeoffs in scheduling. A research framework has been developed using a causal diagram to illustrate the cause-and-effect analysis of schedule pressure. An empirical investigation has been performed by using survey data collected from 102 construction practitioners working in 38 construction sites in Singapore. The results of this survey data analysis indicate that advantages of increasing the pace of work—by working under schedule pressure—can be offset by losses in productivity and quality. The negative effects of schedule pressure arise mainly by working out of sequence, generating work defects, cutting corners, and losing the motivation to work. The adverse effects of schedule pressure can be minimized by scheduling construction activities realistically and planning them proactively, motivating workers, and by establishing an effective project coordination and communication mechanism.
Resumo:
Characterization of the combustion products released during the burning of commonly used engineering metallic materials may aid in material selection and risk assessment for the design of oxygen systems. The characterization of combustion products in regards to size distribution and morphology gives useful information for systems addressing fire detection. Aluminum rods (3.2-mm diameter cylinders) were vertically mounted inside a combustion chamber and ignited in pressurized oxygen by resistively heating an aluminum/palladium igniter wire attached to the bottom of the test sample. This paper describes the experimental work conducted to establish the particle size distribution and morphology of the resultant combustion products collected after the burning was completed and subsequently analyzed. In general, the combustion products consisted of a re-solidified oxidized slag and many small hollow spheres of size ranging from about 500 nm to 1000 µm in diameter, surfaced with quenched dendritic and grain-like structures. The combustion products were characterized using optical and scanning electron microscopy.
Resumo:
The effects of ethanol fumigation on the inter-cycle variability of key in-cylinder pressure parameters in a modern common rail diesel engine have been investigated. Specifically, maximum rate of pressure rise, peak pressure, peak pressure timing and ignition delay were investigated. A new methodology for investigating the start of combustion was also proposed and demonstrated—which is particularly useful with noisy in-cylinder pressure data as it can have a significant effect on the calculation of an accurate net rate of heat release indicator diagram. Inter-cycle variability has been traditionally investigated using the coefficient of variation. However, deeper insight into engine operation is given by presenting the results as kernel density estimates; hence, allowing investigation of otherwise unnoticed phenomena, including: multi-modal and skewed behaviour. This study has found that operation of a common rail diesel engine with high ethanol substitutions (>20% at full load, >30% at three quarter load) results in a significant reduction in ignition delay. Further, this study also concluded that if the engine is operated with absolute air to fuel ratios (mole basis) less than 80, the inter-cycle variability is substantially increased compared to normal operation.
Resumo:
Background: Critically ill patients are at high risk for pressure ulcer (PrU) development due to their high acuity and the invasive nature of the multiple interventions and therapies they receive. With reported incidence rates of PrU development in the adult critical care population as high as 56%, the identification of patients at high risk of PrU development is essential. This paper will explore the association between PrU development and risk factors. It will also explore PrU development and the use of risk assessment scales for critically ill patients in adult intensive care units. Method: A literature search from 2000 to 2012 using the CINHAL, Cochrane Library, EBSCOHost, Medline (via EBSCOHost), PubMed, ProQuest and Google Scholar databases was conducted. Key words used were: pressure ulcer/s; pressure sore/s; decubitus ulcer/s; bed sore/s; critical care; intensive care; critical illness; prevalence; incidence; prevention; management; risk factor; risk assessment scale. Results: Nineteen articles were included in this review; eight studies addressing PrU risk factors, eight studies addressing risk assessment scales and three studies overlapping both. Results from the studies reviewed identified 28 intrinsic and extrinsic risk factors which may lead to PrU development. Development of a risk factor prediction model in this patient population, although beneficial, appears problematic due to many issues such as diverse diagnoses and subsequent patient needs. Additionally, several risk assessment instruments have been developed for early screening of patients at higher risk of developing PrU in the ICU. No existing risk assessment scales are valid for identification high risk critically ill patient,with the majority of scales potentially over-predicting patients at risk for PrU development. Conclusion: Research studies to inform the risk factors for potential pressure ulcer development are inconsistent. Additionally, there is no consistent or clear evidence which demonstrates any scale to better or more effective than another when used to identify the patients at risk for PrU development. Furthermore robust research is needed to identify the risk factors and develop valid scales for measuring the risk of PrU development in ICU.
Resumo:
This study of English Coronial practice raises a number of questions, not only regarding state investigations of suicide, but also of the role of the Coroner itself. Following observations at over 20 inquests into possible suicides, and in-depth interviews with six Coroners, three main issue emerged: first, there exists considerable slippage between different Coroners over which deaths are likely to be classified as suicide; second, the high standard of proof required, and immense pressure faced by Coroners from family members at inquest to reach any verdict other than suicide, can significantly depress likely suicide rates; and finally, Coroners feel no professional obligation, either individually or collectively, to contribute to the production of consistent and useful social data regarding suicide—arguably rendering comparative suicide statistics relatively worthless. These issues lead, ultimately, to a more important question about the role we expect Coroners to play within social governance, and within an effective, contemporary democracy.
Resumo:
In situ FT-IR spectroscopy allows the methanol synthesis reaction to be investigated under actual industrial conditions of 503 K and 10 MPa. On Cu/SiO2 catalyst formate species were initially formed which were subsequently hydrogenated to methanol. During the reaction a steady state concentration of formate species persisted on the copper. Additionally, a small quantity of gaseous methane was produced. In contrast, the reaction of CO2 and H2 on ZnO/SiO2 catalyst only resulted in the formation of zinc formate species: no methanol was detected. The interaction of CO2 and H2 with Cu/ZnO/SiO2 catalyst gave formate species on both copper and zinc oxide. Methanol was again formed by the hydrogenation of copper formate species. Steady-state concentrations of copper formate existed under actual industrial reaction conditions, and copper formate is the pivotal intermediate for methanol synthesis. Collation of these results with previous data on copper-based methanol synthesis catalysts allowed the formulation of a reaction mechanism
Resumo:
This thesis introduced Bayesian statistics as an analysis technique to isolate resonant frequency information in in-cylinder pressure signals taken from internal combustion engines. Applications of these techniques are relevant to engine design (performance and noise), energy conservation (fuel consumption) and alternative fuel evaluation. The use of Bayesian statistics, over traditional techniques, allowed for a more in-depth investigation into previously difficult to isolate engine parameters on a cycle-by-cycle basis. Specifically, these techniques facilitated the determination of the start of pre-mixed and diffusion combustion and for the in-cylinder temperature profile to be resolved on individual consecutive engine cycles. Dr Bodisco further showed the utility of the Bayesian analysis techniques by applying them to in-cylinder pressure signals taken from a compression ignition engine run with fumigated ethanol.
Resumo:
A low temperature lignocellulose pretreatment process was developed using acid-catalysed mixtures of alkylene carbonate and alkylene glycol. Pretreatment of sugarcane bagasse with mixtures of ethylene carbonate (EC) and ethylene glycol (EG) was more effective than that with mixtures of propylene carbonate (PC) and propylene glycol (PG). These mixtures were more effective than the individual components in making bagasse cellulose more amenable to cellulase digestion. Glucan digestibilities of ≥87% could be achieved with a wide range of EC to EG ratios from 9:1 to 1:1 (w/w). Pretreatment of bagasse by the EC/EG mixture with a ratio of 4:1 in the presence of 1.2% H2SO4 at 90 °C for 30 min led to the highest glucan enzymatic digestibility of 93%. The high glucan digestibilities obtained under these acidic conditions were due to (a) the ability of alkylene carbonate to cause significant biomass size reduction, (b) the ability of alkylene glycol to cause biomass defibrillation, (c) the ability of alkylene carbonate and alkylene glycol to remove xylan and lignin, and (d) the magnified above attributes in the mixtures of alkylene carbonate and alkylene glycol.
Resumo:
High-quality epitaxial YBa2Cu3O7-δ (YBCO) thin films were achieved by a modified off-axis sputtering technique with high deposition rates (3.3 nm/min). The film quality and the deposition rate depended crucially on the target-to-substrate separation. Epitaxial YBCO/NdGaO3(NGO)/YBCO trilayers were successfully grown onto SrTiO3, Y-ZrO2, and LaAlO3 substrates by dc and rf sputtering. The epitaxial relations were found to be [001] YBCO//[001]NGO, [100]YBCO, or [010] YBCO//[110]NGO and [001]YBCO//[110] NGO, [100]YBCO, or [010]YBCO//[001] NGO, where the latter orientation relationship was dominating. Subsequent top YBCO layers grew c axis oriented independently of the two epitaxial orientations of the NGO. The orientation relationships between YBCO and NGO were the same. Auger electron depth profiles and transmission electron microscopy indicated that the interdiffusion at the interface between the YBCO and NGO layers was not strong even at 740°C. The superconducting transition temperatures of the top and bottom YBCO layers were about the same as that of YBCO single layers, i.e., 87-90 K. Scanning electron microscopy of the surface morphologies of the YBCO and the NGO showed that a smaller substrate-target distance resulted in smoother films.
Resumo:
This research investigates the decision making process of individuals from revealed preferences in extreme environments or life-and-death situations, from a behavioral economics perspective. The empirical analysis of revealed behavioral preferences shows how the individual decision making process can deviate from the standard self-interested or “homo economicus” model in non-standard situations. The environments examined include: elite athletes in FIFA World and Euro Cups; climbing on Everest and the Himalaya; communication during 9/11 and risk seeking after the 2011 Brisbane floods. The results reveal that the interaction of culture and environment has a significant impact on the decision process, as social behaviors and institutions are intimately intertwined, which govern the processes of human behavior and interaction. Additionally, that risk attitudes are not set and that immediate environmental factors can induce a significant shift in an individuals risk seeking behaviors.
Resumo:
Background: Diabetic peripheral neuropathy is an important cause of foot ulceration and limb loss. This systematic review and meta-analysis investigated the effect of diabetic peripheral neuropathy on gait, dynamic electromyography and dynamic plantar pressures. Methods: Electronic databases were searched systematically for articles reporting the effect of diabetic peripheral neuropathy on gait, dynamic electromyography and plantar pressures. Searches were restricted to articles published between January 2000 and April 2012. Outcome measures assessed included spatiotemporal parameters, lower limb kinematics, kinetics, muscle activation and plantar pressure. Meta-analyses were carried out on all outcome measures reported by ≥3 studies. Findings: Sixteen studies were included consisting of 382 neuropathy participants, 216 diabetes controls without neuropathy and 207 healthy controls. Meta-analysis was performed on 11 gait variables. A high level of heterogeneity was noted between studies. Meta-analysis results suggested a longer stance time and moderately higher plantar pressures in diabetic peripheral neuropathy patients at the rearfoot, midfoot and forefoot compared to controls. Systematic review of studies suggested potential differences in the biomechanical characteristics (kinematics, kinetics, EMG) of diabetic neuropathy patients. However these findings were inconsistent and limited by small sample sizes.; Interpretation: Current evidence suggests that patients with diabetic peripheral neuropathy have elevated plantar pressures and occupy a longer duration of time in the stance-phase during gait. Firm conclusions are hampered by the heterogeneity and small sample sizes of available studies. Interpretation: Current evidence suggests that patients with diabetic peripheral neuropathy have elevated plantar pressures and occupy a longer duration of time in the stance-phase during gait. Firm conclusions are hampered by the heterogeneity and small sample sizes of available studies.