214 resultados para pump-probe technique
Resumo:
With a lack of places to gain an education in the craft of romance writing, novelists have few places to turn to gain real feedback. This paper investigates an alternative to textbooks, conferences, and workshops through an examination of the role provided to the writer by critique groups. How these groups work, how they benefit an author, and the critique groups as a whole are discussed. This work studies the form of Peer Assessment and Learning (PAL) and compares the technique used by educational institutions all over the world with the practice of author groups critiquing their own work. The research shows how a critique group can assist a writer to learn, grow and develop, helping to enhance the writer’s skills through constructive feedback, which gives them confidence to sell their work.
Resumo:
BOOK: Written by the surgeons of the Exeter Hip Team and their colleagues from around the world, this book describes 40 years of innovation and development with cemented hip replacement. Topics covered include the basic science behind successful cemented hip replacement, modern surgical techniques and recent advances. There is also extensive coverage of the revision techniques developed at Exeter and elsewhere, focussing on femoral and acetabular impaction grafting. Each chapter is a self-contained article with an emphasis, where appropriate, on practical techniques and surgical tips, supported by line drawings and intra-operative photographs.
Resumo:
Background and purpose Our aim was to prove in an animal model that the use of HA paste at the cement-bone interface in the acetabulum would improve fixation. We examined, in sheep, the effect of interposing a layer of hydroxyapatite cement around the periphery of a polyethylene socket prior to fixing it using polymethylemethacrylate (PMMA). Methods We made a randomized study involving 22 sheep to test whether the application of BoneSource hydroxyapatite material to the surface of the ovine acetabulum prior to cementing a polyethylene cup at hip arthroplasty improved the fixation and the nature of the interface. We studied the gross radiographical appearance of the implant-bone interface and the histological appearance at the interface. Results There were more radiolucencies evident in the control group. Histologically, only sheep randomized into the BoneSource group exhibited a fully osseointegrated interface. Use of the hydroxyapatite material did not confer any detrimental effects. In some cases the material appeared to have been fully resorbed. When the material was evident on histological section, it was incorporated into an osseointegrated interface. There was no giant cell reaction present in any case. There was no evidence of migration of BoneSource to the articulation. Interpretation The application of HA material prior to cementation of a socket produced an improved interface. The technique may be useful in man with to extend the longevity of the cemented implant by protecting the socket interface from the effect of hydrodynamic fluid flow and particulate debris.
Resumo:
By incorporating ferrocene into the hydrophobic membrane of PEG-b-PCL polymersome nanoparticles it is possible to selectively visualize their core using Transmission Electron Microscopy (TEM). Two different sizes of ferrocene-loaded polymersomes with mean hydrodynamic diameters of approximately 40 and 90 nm were prepared. Image analysis of TEM pictures of these polymersomes found that the mean diameter of the core was 4–5 times smaller than the mean hydrodynamic diameter. The values obtained also allow the surface diameter and internal volume of the core to be calculated.
Resumo:
Experiments were undertaken to study drying kinetics of different shaped moist food particulates during heat pump assisted fluidised bed drying. Three particular geometrical shapes of parallelepiped, cylindrical and spheres were selected from potatoes (aspect ratio = 1:1, 2:1, 3:1), cut beans (length: diameter = 1:1, 2:1, 3:1) and peas respectively. A batch fluidised bed dryer connected to a heat pump system was used for the experimentation. A Heat pump and fluid bed combination was used to increase overall energy efficiency and achieve higher drying rates. Drying kinetics, were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50o C. Due to complex hydrodynamics of the fluidised beds, drying kinetics are dryer or material specific. Numerous mathematical models can be used to calculate drying kinetics ranging from analytical models with simplified assumptions to empirical models built by regression using experimental data. Empirical models are commonly used for various food materials due to their simpler approach. However problems in accuracy, limits the applications of empirical models. Some limitations of empirical models could be reduced by using semi-empirical models based on heat and mass transfer of the drying operation. One such method is the quasi-stationary approach. In this study, a modified quasi-stationary approach was used to model drying kinetics of the cylindrical food particles at three drying temperatures.
Resumo:
Background Malnutrition is common among dialysis patients and is associated with an adverse outcome. One cause of this is a persistent reduction in nutrient intake, suggesting an abnormality of appetite regulation. Methods We used a novel technique to describe the appetite profile in 46 haemodialysis (HD) patients and 40 healthy controls. The Electronic Appetite Rating System (EARS) employs a palmtop computer to collect hourly ratings of motivation to eat and mood. We collected data on hunger, desire to eat, fullness, and tiredness. HD subjects were monitored on the dialysis day and the interdialytic day. Controls were monitored for 1 or 2 days. Results Temporal profiles of motivation to eat for the controls were similar on both days. Temporal profiles of motivation to eat for the HD group were lower on the dialysis day. Mean HD scores were not significantly different from controls. Dietary records indicated that dialysis patients consumed less food than controls. Conclusions Our data indicate that the EARS can be used to monitor subjective appetite states continuously in a group of HD patients. A HD session reduces hunger and desire to eat. Patients feel more tired after dialysis. This does not correlate with their hunger score, but does correlate with their fullness rating. Nutrient intake is reduced, suggesting a resetting of appetite control for the HD group. The EARS may be useful for intervention studies.
Resumo:
Bovine intestine was dried in a heat pump fluid bed combination. Minimum fluidisation velocity was calculated by Ergun Equation and some relations were established.
Resumo:
A suspension system for the BiVACOR biventricular assist device (BiVAD) has been developed and tested. The device features two semi-open centrifugal impellers mounted on a common rotating hub. Flow balancing is achieved through the movement of the rotor in the axial direction. The rotor is suspended in the pump casings by an active magnetic suspension system in the axial direction and a passive hydrodynamic bearing in the radial direction. This paper investigates the axial movement capacity of themagnetic bearing system and the power consumption at various operating points. The force capacity of the passive hydrodynamic bearing is investigated using a viscous glycerol solution. Axial rotor movement in the range of ±0.15 mm is confirmed and power consumption is under 15.5 W. The journal bearing is shown to stabilize the rotor in the radial direction at the required operating speed. Magnetic levitation is a viable suspension technique for the impeller of an artificial heart to improve device lifetime and reduce blood damage.
Resumo:
This study reports the potential toxicological impact of particles produced during biomass combustion by an automatic pellet boiler and a traditional logwood stove under various combustion conditions using a novel profluorescent nitroxide probe BPEAnit. This probe is weakly fluorescent, but yields strong fluorescence emission upon radical trapping or redox activity. Samples were collected by bubbling aerosol through an impinger containing BPEAnit solution, followed by fluorescence measurement. The fluorescence of BPEAnit was measured for particles produced during various combustion phases, at the beginning of burning (cold start), stable combustion after refilling with the fuel (warm start) and poor burning conditions. For particles produced by the logwood stove under cold-start conditions significantly higher amounts of reactive species per unit of particulate mass were observed compared to emissions produced during a warm start. In addition, sampling of logwood burning emissions after passing through a thermodenuder at 250oC resulted in an 80-100% reduction of the fluorescence signal of BPEAnit probe, indicating that the majority of reactive species were semivolatile. Moreover, the amount of reactive species showed a strong correlation with the amount of particulate organic material. This indicates the importance of semivolatile organics in particle-related toxicity. Particle emissions from the pellet boiler, although of similar mass concentration, were not observed to lead to an increase in fluorescence signal during any of the combustion phases.
Resumo:
Managing the sustainability of urban infrastructure requires regular health monitoring of key infrastructure such as bridges. The process of structural health monitoring involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors, and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures, and acoustic emission is one technique that is finding an increasing use in the monitoring of civil infrastructures such as bridges. Acoustic emission technique is based on the recording of stress waves generated by rapid release of energy inside a material, followed by analysis of recorded signals to locate and identify the source of emission and assess its severity. This chapter first provides a brief background of the acoustic emission technique and the process of source localization. Results from laboratory experiments conducted to explore several aspects of the source localization process are also presented. The findings from the study can be expected to enhance knowledge of the acoustic emission process, and to aid the development of effective bridge structure diagnostics systems.