110 resultados para predictive compensation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes an online learning control system that uses the strategy of Model Predictive Control (MPC) in a model based locally weighted learning framework. The new approach, named Locally Weighted Learning Model Predictive Control (LWL-MPC), is proposed as a solution to learn to control robotic systems with nonlinear and time varying dynamics. This paper demonstrates the capability of LWL-MPC to perform online learning while controlling the joint trajectories of a low cost, three degree of freedom elastic joint robot. The learning performance is investigated in both an initial learning phase, and when the system dynamics change due to a heavy object added to the tool point. The experiment on the real elastic joint robot is presented and LWL-MPC is shown to successfully learn to control the system with and without the object. The results highlight the capability of the learning control system to accommodate the lack of mechanical consistency and linearity in a low cost robot arm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes techniques to improve the performance of i-vector based speaker verification systems when only short utterances are available. Short-length utterance i-vectors vary with speaker, session variations, and the phonetic content of the utterance. Well established methods such as linear discriminant analysis (LDA), source-normalized LDA (SN-LDA) and within-class covariance normalisation (WCCN) exist for compensating the session variation but we have identified the variability introduced by phonetic content due to utterance variation as an additional source of degradation when short-duration utterances are used. To compensate for utterance variations in short i-vector speaker verification systems using cosine similarity scoring (CSS), we have introduced a short utterance variance normalization (SUVN) technique and a short utterance variance (SUV) modelling approach at the i-vector feature level. A combination of SUVN with LDA and SN-LDA is proposed to compensate the session and utterance variations and is shown to provide improvement in performance over the traditional approach of using LDA and/or SN-LDA followed by WCCN. An alternative approach is also introduced using probabilistic linear discriminant analysis (PLDA) approach to directly model the SUV. The combination of SUVN, LDA and SN-LDA followed by SUV PLDA modelling provides an improvement over the baseline PLDA approach. We also show that for this combination of techniques, the utterance variation information needs to be artificially added to full-length i-vectors for PLDA modelling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a model-predictive control (MPC) method is detailed for the control of nonlinear systems with stability considerations. It will be assumed that the plant is described by a local input/output ARX-type model, with the control potentially included in the premise variables, which enables the control of systems that are nonlinear in both the state and control input. Additionally, for the case of set point regulation, a suboptimal controller is derived which has the dual purpose of ensuring stability and enabling finite-iteration termination of the iterative procedure used to solve the nonlinear optimization problem that is used to determine the control signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important aspect of decision support systems involves applying sophisticated and flexible statistical models to real datasets and communicating these results to decision makers in interpretable ways. An important class of problem is the modelling of incidence such as fire, disease etc. Models of incidence known as point processes or Cox processes are particularly challenging as they are ‘doubly stochastic’ i.e. obtaining the probability mass function of incidents requires two integrals to be evaluated. Existing approaches to the problem either use simple models that obtain predictions using plug-in point estimates and do not distinguish between Cox processes and density estimation but do use sophisticated 3D visualization for interpretation. Alternatively other work employs sophisticated non-parametric Bayesian Cox process models, but do not use visualization to render interpretable complex spatial temporal forecasts. The contribution here is to fill this gap by inferring predictive distributions of Gaussian-log Cox processes and rendering them using state of the art 3D visualization techniques. This requires performing inference on an approximation of the model on a discretized grid of large scale and adapting an existing spatial-diurnal kernel to the log Gaussian Cox process context.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines some questions of statutory interpretation as they apply to section 130 of the Land Title Act 1994 (Qld)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In moderate to high sea states, the effectiveness of ship fin stabilizers can severely deteriorate due to nonlinear effects arising from unsteady hydrodynamic characteristics of the fins: dynamic stall. These nonlinear effects take the form of a hysteresis, and they become very significant when the effective angle of attack of the fins exceeds a certain threshold angle. Dynamic stall can result in a complete loss of control action depending on how much the fins exceed the threshold angle. When this is detected, it is common to reduce the gain of the controller that commands the fins. This approach is cautious and tends to reduce performance when the conditions leading to dynamic stall disappear. An alternative approach for preventing the effects while keeping high performance, consists of estimating the effective angle of attack and set a conservative constraint on it as part of the control objectives. In this paper, we investigate the latter approach, and propose the use of a model predictive control (MPC) to prevent the development of these nonlinear effects by considering constraints on both the mechanical angle of the fins and the effective angle of attack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose This Study evaluated the predictive validity of three previously published ActiGraph energy expenditure (EE) prediction equations developed for children and adolescents. Methods A total of 45 healthy children and adolescents (mean age: 13.7 +/- 2.6 yr) completed four 5-min activity trials (normal walking. brisk walking, easy running, and fast running) in ail indoor exercise facility. During each trial, participants were all ActiGraph accelerometer oil the right hip. EE was monitored breath by breath using the Cosmed K4b(2) portable indirect calorimetry system. Differences and associations between measured and predicted EE were assessed using dependent t-tests and Pearson correlations, respectively. Classification accuracy was assessed using percent agreement, sensitivity, specificity, and area under the receiver operating characteristic (ROC) curve. Results None of the equations accurately predicted mean energy expenditure during each of the four activity trials. Each equation, however, accurately predicted mean EE in at least one activity trial. The Puyau equation accurately predicted EE during slow walking. The Trost equation accurately predicted EE during slow running. The Freedson equation accurately predicted EE during fast running. None of the three equations accurately predicted EE during brisk walking. The equations exhibited fair to excellent classification accuracy with respect to activity intensity. with the Trost equation exhibiting the highest classification accuracy and the Puyau equation exhibiting the lowest. Conclusions These data suggest that the three accelerometer prediction equations do not accurately predict EE on a minute-by-minute basis in children and adolescents during overground walking and running. The equations maybe, however, for estimating participation in moderate and vigorous activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrification of vehicular systems has gained increased momentum in recent years with particular attention to constant power loads (CPLs). Since a CPL potentially threatens system stability, stability analysis of hybrid electric vehicle with CPLs becomes necessary. A new power buffer configuration with battery is introduced to mitigate the effect of instability caused by CPLs. Model predictive control (MPC) is applied to regulate the power buffer to decouple source and load dynamics. Moreover, MPC provides an optimal tradeoff between modification of load impedance, variation of dc-link voltage and battery current ripples. This is particularly important during transients or starting of system faults, since battery response is not very fast. Optimal tradeoff becomes even more significant when considering low-cost power buffer without battery. This paper analyzes system models for both voltage swell and voltage dip faults. Furthermore, a dual mode MPC algorithm is implemented in real time offering improved stability. A comprehensive set of experimental results is included to verify the efficacy of the proposed power buffer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suspended loads on UAVs can provide significant benefits to several applications in agriculture, law enforcement and construction. The load impact on the underlying system dynamics should not be neglected as significant feedback forces may be induced on the vehicle during certain flight manoeuvres. Much research has focused on standard multi-rotor position and attitude control with and without a slung load. However, predictive control schemes, such as Nonlinear Model Predictive Control (NMPC), have not yet been fully explored. To this end, we present software and flight system architecture to test controller for safe and precise operation of multi-rotors with heavy slung load in three dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose The aim of this study was to assess the predictive validity of three accelerometer prediction equations (Freedson et aL, 1997; Trost et aL, 1998; Puyau et al., 2002) for energy expenditure (EE) during overland walking and running in children and adolescents. Methods 45 healthy children and adolescents aged 10-18 completed the following protocol, each task 5-mins in duration, with a 5-min rest period in between; walking normally; walking briskly; running easily and running fast. During each task participants wore MTI (WAM 7164) Actigraphs on the left and right hips. VO2 was monitored breath by breath using the Cosmed K4b2 portable indirect calorimetry system. For each prediction equation, difference scores were calculated as EE measured minus EE predicted. The percentage of 1-min epochs correctly categorized as light (<3 METs), moderate (3-5.9 METs), and vigorous (≥6 METS) was also calculated. Results The Freedson and Trost equations consistently overestimated MET level. The level of overestimation was statistically significant across all tasks for the Freedson equation, and was significant for only the walking tasks for the Trost equation. The Puyau equation consistently underestimated AEE with the exception of the walking normally task. In terms of categorisation, the Freedson equation (72.8% agreement) demonstrated better agreement than the Puyau (60.6%). Conclusions These data suggest that the three accelerometer prediction equations do not accurately predict EE on a minute-by-minute basis in children and adolescents during overland walking and running. However, the cut points generated by these equations maybe useful for classifying activity as either, light, moderate, or vigorous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article examines s130 of the Land Title Act 1994 (Qld) in detail, and includes an analysis of authorities which have interpreted comparable provisions in other Australian jurisdictions and in New Zealand. Its purpose is to provide a comprehensive guide as to the circumstances in which the court may now be expected to award compensation in respect of the lodgment or continuance of a caveat in Queensland. Finally, the author considers whether the changes which have been embodied in s130 may now be regarded as providing adequate protection for persons who suffer damage as a result of the lodgment or continuance of a caveat which cannot ultimately be sustained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multivariate predictive models are widely used tools for assessment of aquatic ecosystem health and models have been successfully developed for the prediction and assessment of aquatic macroinvertebrates, diatoms, local stream habitat features and fish. We evaluated the ability of a modelling method based on the River InVertebrate Prediction and Classification System (RIVPACS) to accurately predict freshwater fish assemblage composition and assess aquatic ecosystem health in rivers and streams of south-eastern Queensland, Australia. The predictive model was developed, validated and tested in a region of comparatively high environmental variability due to the unpredictable nature of rainfall and river discharge. The model was concluded to provide sufficiently accurate and precise predictions of species composition and was sensitive enough to distinguish test sites impacted by several common types of human disturbance (particularly impacts associated with catchment land use and associated local riparian, in-stream habitat and water quality degradation). The total number of fish species available for prediction was low in comparison to similar applications of multivariate predictive models based on other indicator groups, yet the accuracy and precision of our model was comparable to outcomes from such studies. In addition, our model developed for sites sampled on one occasion and in one season only (winter), was able to accurately predict fish assemblage composition at sites sampled during other seasons and years, provided that they were not subject to unusually extreme environmental conditions (e.g. extended periods of low flow that restricted fish movement or resulted in habitat desiccation and local fish extinctions).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper a novel controller for stable and precise operation of multi-rotors with heavy slung loads is introduced. First, simplified equations of motions for the multi-rotor and slung load are derived. The model is then used to design a Nonlinear Model Predictive Controller (NMPC) that can manage the highly nonlinear dynamics whilst accounting for system constraints. The controller is shown to simultaneously track specified waypoints whilst actively damping large slung load oscillations. A Linear-quadratic regulator (LQR) controller is also derived, and control performance is compared in simulation. Results show the improved performance of the Nonlinear Model Predictive Control (NMPC) controller over a larger flight envelope, including aggressive maneuvers and large slung load displacements. Computational cost remains relatively small, amenable to practical implementation. Such systems for small Unmanned Aerial Vehicles (UAVs) may provide significant benefit to several applications in agriculture, law enforcement and construction.