64 resultados para item recommendation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

User profiling is the process of constructing user models which represent personal characteristics and preferences of customers. User profiles play a central role in many recommender systems. Recommender systems recommend items to users based on user profiles, in which the items can be any objects which the users are interested in, such as documents, web pages, books, movies, etc. In recent years, multidimensional data are getting more and more attention for creating better recommender systems from both academia and industry. Additional metadata provides algorithms with more details for better understanding the interactions between users and items. However, most of the existing user/item profiling techniques for multidimensional data analyze data through splitting the multidimensional relations, which causes information loss of the multidimensionality. In this paper, we propose a user profiling approach using a tensor reduction algorithm, which we will show is based on a Tucker2 model. The proposed profiling approach incorporates latent interactions between all dimensions into user profiles, which significantly benefits the quality of neighborhood formation. We further propose to integrate the profiling approach into neighborhoodbased collaborative filtering recommender algorithms. Experimental results show significant improvements in terms of recommendation accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction The Skin Self-Examination Attitude Scale (SSEAS) is a brief measure that allows for the assessment of attitudes in relation to skin self-examination. This study evaluated the psychometric properties of the SSEAS using Item Response Theory (IRT) methods in a large sample of men ≥ 50 years in Queensland, Australia. Methods A sample of 831 men (420 intervention and 411 control) completed a telephone assessment at the 13-month follow-up of a randomized-controlled trial of a video-based intervention to improve skin self-examination (SSE) behaviour. Descriptive statistics (mean, standard deviation, item–total correlations, and Cronbach’s alpha) were compiled and difficulty parameters were computed with Winsteps using the polytomous Rasch Rating Scale Model (RRSM). An item person (Wright) map of the SSEAS was examined for content coverage and item targeting. Results The SSEAS have good psychometric properties including good internal consistency (Cronbach’s alpha = 0.80), fit with the model and no evidence for differential item functioning (DIF) due to experimental trial grouping was detected. Conclusions The present study confirms the SSEA scale as a brief, useful and reliable tool for assessing attitudes towards skin self-examination in a population of men 50 years or older in Queensland, Australia. The 8-item scale shows unidimensionality, allowing levels of SSE attitude, and the item difficulties, to be ranked on a single continuous scale. In terms of clinical practice, it is very important to assess skin cancer self-examination attitude to identify people who may need a more extensive intervention to allow early detection of skin cancer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many websites presently provide the facility for users to rate items quality based on user opinion. These ratings are used later to produce item reputation scores. The majority of websites apply the mean method to aggregate user ratings. This method is very simple and is not considered as an accurate aggregator. Many methods have been proposed to make aggregators produce more accurate reputation scores. In the majority of proposed methods the authors use extra information about the rating providers or about the context (e.g. time) in which the rating was given. However, this information is not available all the time. In such cases these methods produce reputation scores using the mean method or other alternative simple methods. In this paper, we propose a novel reputation model that generates more accurate item reputation scores based on collected ratings only. Our proposed model embeds statistical data, previously disregarded, of a given rating dataset in order to enhance the accuracy of the generated reputation scores. In more detail, we use the Beta distribution to produce weights for ratings and aggregate ratings using the weighted mean method. Experiments show that the proposed model exhibits performance superior to that of current state-of-the-art models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis introduced two novel reputation models to generate accurate item reputation scores using ratings data and the statistics of the dataset. It also presented an innovative method that incorporates reputation awareness in recommender systems by employing voting system methods to produce more accurate top-N item recommendations. Additionally, this thesis introduced a personalisation method for generating reputation scores based on users' interests, where a single item can have different reputation scores for different users. The personalised reputation scores are then used in the proposed reputation-aware recommender systems to enhance the recommendation quality.