133 resultados para intestine contraction
Resumo:
Irritable bowel syndrome (IBS) is a common chronic disorder with a prevalence ranging from 5 to 10 % of the world's population. This condition is characterised by abdominal discomfort or pain, altered bowel habits, and often bloating and abdominal distension. IBS reduces quality of life in the same degree of impairment as major chronic diseases such as congestive heart failure and diabetes and the economic burden on the health care system and society is high. Abnormalities have been reported in the neuroendocrine peptides/amines of the stomach, small- and large intestine in patients with IBS. These abnormalities would cause disturbances in digestion, gastrointestinal motility and visceral hypersensitivity, which have been reported in patients with IBS. These abnormalities seem to contribute to the symptom development and appear to play a central role in the pathogenesis of IBS. Neuroendocrine peptides/amines are potential tools in the treatment and diagnosis of IBS. In particular, the cell density of duodenal chromogranin A expressing cells appears to be a good histopathological marker for the diagnosis of IBS with high sensitivity and specificity.
Resumo:
Cold water immersion (CWI) is a popular recovery modality, but actual physiological responses to CWI after exercise in the heat have not been well documented. The purpose of this study was to examine effects of 20-min CWI (14 degrees C) on neuromuscular function, rectal (T(re)) and skin temperature (T(sk)), and femoral venous diameter after exercise in the heat. Ten well-trained male cyclists completed two bouts of exercise consisting of 90-min cycling at a constant power output (216+/-12W) followed by a 16.1km time trial (TT) in the heat (32 degrees C). Twenty-five minutes post-TT, participants were assigned to either CWI or control (CON) recovery conditions in a counterbalanced order. T(re) and T(sk) were recorded continuously, and maximal voluntary isometric contraction torque of the knee extensors (MVIC), MVIC with superimposed electrical stimulation (SMVIC), and femoral venous diameters were measured prior to exercise, 0, 45, and 90min post-TT. T(re) was significantly lower in CWI beginning 50min post-TT compared with CON, and T(sk) was significantly lower in CWI beginning 25min post-TT compared with CON. Decreases in MVIC, and SMVIC torque after the TT were significantly greater for CWI compared with CON; differences persisted 90min post-TT. Femoral vein diameter was approximately 9% smaller for CWI compared with CON at 45min post-TT. These results suggest that CWI decreases T(re), but has a negative effect on neuromuscular function.
Resumo:
PURPOSE: This study examined the effects of overnight sleep deprivation on recovery following competitive rugby league matches. METHODS: Eleven male, amateur rugby league players performed two competitive matches, followed by either a normal night's sleep (~8h; CONT) or a sleep deprived night (~0h; SDEP) in a randomised fashion. Testing was conducted the morning of the match, and immediately post-match, 2h post and the next morning (16h post-match). Measures included counter-movement jump (CMJ) distance, knee extensor maximal voluntary contraction (MVC), voluntary activation (VA), venous blood creatine kinase (CK) and C-reactive protein (CRP), perceived muscle soreness and a word-colour recognition cognitive function test. Percent change between post- and 16h post-match was reported to determine the effect of the intervention the next morning. RESULTS: Large effects indicated a greater post- to 16h post-match percentage decline in CMJ distance following SDEP compared to CONT (P=0.10-0.16; d=0.95-1.05). Similarly, the percentage decline in incongruent word-colour reaction times were increased in SDEP trials (P=0.007; d=1.75). Measures of MVC did not differ between conditions (P=0.40-0.75; d=0.13-0.33), though trends for larger percentage decline in VA were detected in SDEP (P=0.19; d=0.84). Further, large effects indicated higher CK and CRP responses 16h post-match during SDEP compared to CONT (P=0.11-0.87; d=0.80-0.88). CONCLUSIONS: Sleep deprivation negatively affected recovery following a rugby league match, specifically impairing CMJ distance and cognitive function. Practitioners should promote adequate post-match sleep patterns or adjust training demands the next day to accommodate the altered physical and cognitive state following sleep deprivation.
Resumo:
A process for the preparation of a modified kaolin from a kaolin group mineral which includes expansion and contraction of layers of the kaolin group mineral. The layers comprising one Si-tetrahedral sheet and one Al-octahedral sheet. The expansion and contraction may be initiated by initial intercalation of a reagent which can penetrate kaolin layers to reach an interlayer region there between to form an intercalate. Subsequently, the intercalation may be followed by de-intercalation which involves the removal of the reagent. By the above process, there is provided crystalline modified kaolins having the following properties: (i) an increased interlayer space compared to corresponding kaolin group minerals; (ii) an increased susceptibility to intercalation by cations, anions or salts compared to corresponding kaolin group minerals; and (iii) an increased exfoliated morphology compared to corresponding kaolin group minerals.
Resumo:
In this work, the thermal expansion properties of carbon nanotube (CNT)-reinforced nanocomposites with CNT content ranging from 1 to 15 wt% were evaluated using a multi-scale numerical approach, in which the effects of two parameters, i.e., temperature and CNT content, were investigated extensively. For all CNT contents, the obtained results clearly revealed that within a wide low-temperature range (30°C ~ 62°C), thermal contraction is observed, while thermal expansion occurs in a high-temperature range (62°C ~ 120°C). It was found that at any specified CNT content, the thermal expansion properties vary with temperature - as temperature increases, the thermal expansion rate increases linearly. However, at a specified temperature, the absolute value of the thermal expansion rate decreases nonlinearly as the CNT content increases. Moreover, the results provided by the present multi-scale numerical model were in good agreement with those obtained from the corresponding theoretical analyses and experimental measurements in this work, which indicates that this multi-scale numerical approach provides a powerful tool to evaluate the thermal expansion properties of any type of CNT/polymer nanocomposites and therefore promotes the understanding on the thermal behaviors of CNT/polymer nanocomposites for their applications in temperature sensors, nanoelectronics devices, etc.
Resumo:
Triangle-shaped nanohole, nanodot, and lattice antidot structures in hexagonal boron-nitride (h-BN) monolayer sheets are characterized with density functional theory calculations utilizing the local spin density approximation. We find that such structures may exhibit very large magnetic moments and associated spin splitting. N-terminated nanodots and antidots show strong spin anisotropy around the Fermi level, that is, half-metallicity. While B-terminated nanodots are shown to lack magnetism due to edge reconstruction, B-terminated nanoholes can retain magnetic character due to the enhanced structural stability of the surrounding two-dimensional matrix. In spite of significant lattice contraction due to the presence of multiple holes, antidot super lattices are predicted to be stable, exhibiting amplified magnetism as well as greatly enhanced half-metallicity. Collectively, the results indicate new opportunities for designing h-BNbased nanoscale devices with potential applications in the areas of spintronics, light emission, and photocatalysis.
Resumo:
Eccentric exercise commonly results in muscle damage. The primary sequence of events leading to exercise-induced muscle damage is believed to involve initial mechanical disruption of sarcomeres, followed by impaired excitation-contraction coupling and calcium signaling, and finally, activation of calcium-sensitive degradation pathways. Muscle damage is characterized by ultrastructural changes to muscle architecture, increased muscle proteins and enzymes in the bloodstream, loss of muscular strength and range of motion and muscle soreness. The inflammatory response to exercise-induced muscle damage is characterized by leukocyte infiltration and production of pro-inflammatory cytokines within damaged muscle tissue, systemic release of leukocytes and cytokines, in addition to alterations in leukocyte receptor expression and functional activity. Current evidence suggests that inflammatory responses to muscle damage are dependent on the type of eccentric exercise, previous eccentric loading (repeated bouts), age and gender. Circulating neutrophil counts and systemic cytokine responses are greater after eccentric exercise using a large muscle mass (e.g. downhill running, eccentric cycling) than after other types of eccentric exercise involving a smaller muscle mass. After an initial bout of eccentric exercise, circulating leukocyte counts and cell surface receptor expression are attenuated. Leukocyte and cytokine responses to eccentric exercise are impaired in elderly individuals, while cellular infiltration into skeletal muscle is greater in human females than males after eccentric exercise. Whether alterations in intracellular calcium homeostasis influence inflammatory responses to muscle damage is uncertain. Furthermore, the effects of antioxidant supplements are variable, and the limited data available indicates that anti-inflammatory drugs largely have no influence on inflammatory responses to eccentric exercise. In this review, we compare local versus systemic inflammatory responses, and discuss some of the possible mechanisms regulating the inflammatory responses to exercise-induced muscle damage in humans.
Resumo:
In this research fluidization behavior of cubical Bovine intestine samples was studied. Bovine intestine samples were heat pump dried at atmospheric pressure and at emperatures below and above the material freezing points. Experiments were conducted to study fluidization characteristics and drying kinetics at different drying conditions. Bovine particles were characterized according to Geldart classification and minimum fluidization velocity was calculated using Ergun Equation and generalized equation for all drying conditions at the beginning of the trials and end of the trials. Walli’s model was used to categorize stability of the fluidization at the beginning and end of the drying for each trial. Walli’s values determined were positive at the beginning and end of all trials indicating stable fluidisation at the beginning and end for each drying condition.
Resumo:
Skin is the largest, and arguably, the most important organ of the body. It is a complex and multi-dimensional tissue, thus making it essentially impossible to fully model in vitro in conventional 2-dimensional culture systems. In view of this, rodents or pigs are utilised to study wound healing therapeutics or to investigate the biological effects of treatments on skin. However, there are many differences between the wound healing processes in rodents compared to humans (contraction vs. re-epithelialisation) and there are also ethical issues associated with animal testing for scientific research. Therefore, the development of skin equivalent (HSE) models from surgical discard human skin has become an important area of research. The studies in this thesis compare, for the first time, native human skin and the epidermogenesis process in a HSE model. The HSE was reported to be a comparable model for human skin in terms of expression and localisation of key epidermal cell markers. This validated HSE model was utilised to study the potential wound healing therapeutic, hyperbaric oxygen (HBO) therapy. There is a significant body of evidence suggesting that lack of cutaneous oxygen results in and potentiates the chronic, non-healing wound environment. Although the evidence is anecdotal, HBO therapy has displayed positive effects on re-oxygenation of chronic wounds and the clinical outcomes suggest that HBO treatment may be beneficial. Therefore, the HSE was subjected to a daily clinical HBO regime and assessed in terms of keratinocyte migration, proliferation, differentiation and epidermal thickening. HBO treatment was observed to increase epidermal thickness, in particular stratum corneum thickening, but it did not alter the expression or localisation of standard epidermal cell markers. In order to elucidate the mechanistic changes occurring in response to HBO treatment in the HSE model, gene microarrays were performed, followed by qRT-PCR of select genes which were differentially regulated in response to HBO treatment. The biological diversity of the HSEs created from individual skin donors, however, overrode the differences in gene expression between treatment groups. Network analysis of functional changes in the HSE model revealed general trends consistent with normal skin growth and maturation. As a more robust and longer term study of these molecular changes, protein localisation and expression was investigated in sections from the HSEs undergoing epidermogenesis in response to HBO treatment. These proteins were CDCP1, Metallothionein, Kallikrein (KLK) 1 and KLK7 and early growth response 1. While the protein expression within the HSE models exposed to HBO treatment were not consistent in all HSEs derived from all skin donors, this is the first study to detect and compare both KLK1 and CDCP1 protein expression in both a HSE model and native human skin. Furthermore, this is the first study to provide such an in depth analysis of the effect of HBO treatment on a HSE model. The data presented in this thesis, demonstrates high levels of variation between individuals and their response to HBO treatment, consistent with the clinical variation that is currently observed.
Resumo:
Background No study relating the changes obtained in the architecture of erector spinae (ES) muscle were registered with ultrasound and different intensities of muscle contraction recorded by surface EMG (electromyography) on the ES muscle was found. The aim of this study was analyse the relationship in the response of the ES muscle during isometric moderate and light lumbar isometric extension considering architecture and functional muscle variables. Methods Cross-sectional study. 46 subjects (52% men) with a group mean age of 30.4 (±7.78). The participants developed isometric lumbar extension while performing moderate and low isometric trunk and hip extension in a sitting position with hips flexed 90 degrees and the lumbar spine in neutral position. During these measurements, electromyography recordings and ultrasound images were taken bilaterally. Bilaterally pennation angle, muscle thickness, torque and muscle activation were measured. This study was developed at the human movement analysis laboratory of the Health Science Faculty of the University of Malaga (Spain). Results Strong and moderate correlations were found at moderate and low intensities contraction between the variable of the same intensity, with correlation values ranging from 0.726 (Torque Moderate – EMG Left Moderate) to 0.923 (Angle Left Light – Angle Right Light) (p < 0.001). This correlation is observed between the variables that describe the same intensity of contraction, showing a poor correlation between variables of different intensities. Conclusion There is a strong relationship between architecture and function variables of ES muscle when describe an isometric lumbar extension at light or moderate intensity. Keywords: Ultrasonography; Surface electromyography; Thickness; Pennation angle; Erector spinae
Resumo:
Skeletal muscle contraction stimulates multiple signaling cascades that govern a variety of metabolic and transcriptional events. Akt/protein kinase B regulates metabolism and growth/muscle hypertrophy, but contraction effects on this target and its substrates are varied and may depend on the mode of the contractile stimulus. Accordingly, we determined the effects of endurance or resistance exercise on phosphorylation of Akt and downstream substrates in six trained cyclists who performed a single bout of endurance or resistance exercise separated by ?7 days. Muscle biopsies were taken from the vastus lateralis at rest and immediately after exercise. Akt Ser 473 phosphorylation was increased (1.8-fold; P = 0.011) after endurance but was unchanged after resistance exercise. Conversely, Akt Thr 308 phosphorylation was unaltered after either bout of exercise. Several exercise-responsive phosphoproteins were detected by immunoblot analysis with a phospho-Akt substrate antibody. pp160 and pp300 were identified as AS160 and filamin A, respectively, with increased phosphorylation (2.0- and 4.9-fold, respectively; P < 0.05) after endurance but not resistance exercise. In conclusion, AS160 and filamin A may provide an important link to mediate endurance exercise-induced bioeffects in skeletal muscle.
Resumo:
Objectives The purpose of the study was to establish regression equations that could be used to predict muscle thickness and pennation angle at different intensities from electromyography (EMG) based measures of muscle activation during isometric contractions. Design Cross-sectional study. Methods Simultaneous ultrasonography and EMG were used to measure pennation angle, muscle thickness and muscle activity of the rectus femoris and vastus lateralis muscles, respectively, during graded isometric knee extension contractions performed on a Cybex dynamometer. Data form fifteen male soccer players were collected in increments of approximately 25% intensity of the maximum voluntary contraction (MVC) ranging from rest to MVC. Results There was a significant correlation (P < 0.05) between ultrasound predictors and EMG measures for the muscle thickness of rectus femoris with an R2 value of 0.68. There was no significant correlation (P > 0.05) between ultrasound pennation angle for the vastus lateralis predictors for EMG muscle activity with an R2 value of 0.40. Conclusions The regression equations can be used to characterise muscle thickness more accurately and to determine how it changes with contraction intensity, this provides improved estimates of muscle force when using musculoskeletal models.
Resumo:
Background The combination chemotherapy regimen of streptozocin and 5-fluorouracil (FU/STZ) has been used for the treatment of metastatic neuroendocrine tumours. Aim The aim of this study was to analyse the use of this regimen in a tertiary oncology referral centre over a 10-year period. Method We retrospectively analysed nine cases from February 2000 to May 2010. Patient demographics, chemotherapy schedule, toxicities, progression-free and overall survival were tabulated for each patient. Result The median progression-free survival was 17 months (range 3-48+ months), and overall survival 31 months (range 12-53+ months) with no toxicity related deaths. Conclusion FU/STZ was a well-tolerated regimen that produced significant benefit in the setting of metastatic and progressive disease. Our case series demonstrated comparable progression-free survival and overall survival in relation to randomized controlled studies and previous case series. © Royal Academy of Medicine in Ireland 2011.
Resumo:
This study describes the evaluation of a clinical scar scale for our porcine burn scars, which includes scar cosmetic outcome, colour, height and hair, supplemented with reference porcine scar photographs representing each scar outcome and scar colour scores. A total of 72 porcine burn scars at week 6 after burn were rated in vivo and/or on photographs. Good agreements were achieved for both intra-rater reliability (correlation is 0.86-0.98) and inter-rater reliability (ICC=80-85%). The results showed statistically significant correlations for each pair in this clinical scar scale (p<0.01), with the best correlation found between scar cosmetic outcome and scar colour. A multivariate principle components analysis revealed that this clinical scar assessment was highly correlated with scar histology, wound size, and re-epithelialisation data (p<0.001). More severe scars are clinically characterised by darker purple colouration, more elevation, no presence of hair, histologically by thicker scar tissue, thinner remaining normal dermis, are more likely to have worse contraction, and slower re-epithelialisation. This study demonstrates that our clinical scar scale is a reliable, independent and valuable tool for assessing porcine burn outcome and truthfully reflects scar appearance and function. To our knowledge, this is the first study demonstrating a high correlation between clinical scar assessment and scar histology, wound contraction and re-epithelialisation data on porcine burn scars. We believe that the successful use of porcine scar scales is invaluable for assessing potential human burn treatments.
Resumo:
Purpose: To investigate the changes occurring in the axial length, choroidal thickness and anterior biometrics of the eye during a 10 minute near task performed in downward gaze. Methods: Twenty young adult subjects (10 emmetropes and 10 myopes) participated in this study. To measure ocular biometrics in downward gaze, an optical biometer was inclined on a custom built, height and tilt adjustable table. Baseline measures were collected after each subject performed a distance primary gaze control task for 10 mins, to provide wash-out period for prior visual tasks before each of three different accommodation/gaze conditions. These other three conditions included a near task (2.5 D) in primary gaze, and a near (2.5 D) and a far (0 D) accommodative task in downward gaze (25°), all for 10 mins duration. Immediately after, and then 5 and 10 mins from the commencement of each trial, measurements of ocular biometrics (e.g. anterior biometrics, axial length, choroidal thickness and retinal thickness) were obtained. Results: Axial length increased with accommodation and was significantly greater for downward gaze with accommodation (mean change ± SD 23 ± 13 µm at 10 mins) compared to primary gaze with accommodation (mean change 8 ± 15 µm at 10 mins) (p < 0.05). A small amount of choroidal thinning was also found during accommodation that was statistically significant in downward gaze (13 ± 14 µm at 10 mins, p < 0.05). Accommodation in downward gaze also caused greater changes in anterior chamber depth and lens thickness compared to accommodation in primary gaze. Conclusion: Axial length, choroidal thickness and anterior eye biometrics change significantly during accommodation in downward gaze as a function of time. These changes appear to be due to the combined influence of biomechanical factors (i.e. extraocular muscle forces, ciliary muscle contraction) associated with near tasks in downward gaze.