105 resultados para immune-mediated inflammatory diseases


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The 'histone code' is a well-established hypothesis describing the idea that specific patterns of post-translational modifications to histones act like a molecular "code" recognised and used by non-histone proteins to regulate specific chromatin functions. One modification which has received significant attention is that of histone acetylation. The enzymes which regulate this modification are described as histone acetyltransferases or HATs, and histone deacetylases or HDACs. Due to their conserved catalytic domain HDACs have been actively targeted as a therapeutic target. The proinflammatory environment is increasingly being recognised as a critical element for both degenerative diseases and cancer. The present review will discuss the current knowledge surrounding the clinical potential & current development of histone deacetylases for the treatment of diseases for which a proinflammatory environment plays important roles, and the molecular mechanisms by which such inhibitors may play important functions in modulating the proinflammatory environment. © 2009 Bentham Science Publishers Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim/Background: Transfusion-related acute lung injury (TRALI) is a potentially fatal adverse transfusion reaction. It is hypothesised to occur via a two-insult mechanism: the recipient’s underlying co-morbidity in addition to the transfusion of blood products activate neutrophils in the lung resulting in damaged endothelium and capillary leakage. Neutrophil activation may occur by antibody or non-antibody related mechanisms, with the length of storage of cellular blood products implicated in the latter. This study investigated non-antibody mediated priming and/or activation of neutrophil oxidative burst. Methods: A cytochrome C reduction assay was used to assess priming and activation of neutrophil oxidative burst by pooled supernatant (SN) from day 1 (D1; n=75) and day 42 (D42; n=113) packed red blood cells (PRBC). Pooled PRBC-SN were assessed in parallel with PAF (priming), fMLP (activating), PAF + fMLP (priming + activating) and buffer only (negative) controls. Cytochrome C reduction was measured over 30min at 37oC (inclusive of 10min priming). Neutrophil activation by PRBC-SN was assessed cf. buffer only and neutrophil priming by PRBC-SN was assessed by co-incubation with fMLP cf. fMLP alone. One-way ANOVA; Newman-Keuls post-test; p<0.05; n=10 independent assays. Results: Neither D1- nor D42- PRBC-SN alone activated neutrophil oxidative burst. In addition, D1-PRBC-SN did not prime fMLP-activated neutrophil oxidative burst. D42-PRBC-SN did, however, prime neutrophils for subsequent activation of oxidative burst by fMLP, the magnitude of response being similar to PAF (a known neutrophil priming agonist). Conclusion: These findings are consistent with the two-insult mechanism of TRALI. Factors released into the SN during PRBC storage contributed to neutrophil priming synergistically with other neutrophil stimulating agonists. This implicates PRBC storage duration as a key factor contributing to non-immune neutrophil activation in the development of TRALI in patients with pre-disposing inflammatory conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This review examines the multiple levels of pre-existing immunity in the upper and lower female reproductive tract. In addition, we highlight the need for further research of innate and adaptive immune protection of mucosal surfaces in the female reproductive tract. Innate mechanisms include the mucus lining, a tight epithelial barrier and the secretion of antimicrobial peptides and cytokines by epithelial and innate immune cells. Stimulation of the innate immune system also serves to bridge the adaptive arm resulting in the generation of pathogen-specific humoral and cell-mediated immunity. Less understood are the multiple components that act in a coordinated way to provide a network of ongoing protection. Innate and adaptive immunity in the human female reproductive tract are influenced by the stage of menstrual cycle and are directly regulated by the sex steroid hormones, progesterone and estradiol. Furthermore, the effect of hormones on immunity is mediated both directly on immune and epithelial cells and indirectly by stimulating growth factor secretion from stromal cells. The goal of this review is to focus on the diverse aspects of the innate and adaptive immune systems that contribute to a unique network of protection throughout the female reproductive tract.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Visceral leishmaniasis is a chronic parasitic disease associated with severe immune dysfunction. Treatment options are limited to relatively toxic drugs and there is no vaccine for humans available. Hence, there is an urgent need to better understand immune responses following infection with Leishmania species by studying animal models of disease and clinical samples from patients. Here, we review recent discoveries in these areas and highlight shortcomings in our knowledge that need to be addressed if better treatment options are to be developed and effective vaccines designed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and purpose Phosphodiesterases PDE3 and/or PDE4 control ventricular effects of catecholamines in several species but their relative effects in failing human ventricle are unknown. We investigated whether the PDE3-selective inhibitor cilostamide (0.3-1μM) or PDE4 inhibitor rolipram (1-10μM) modified the positive inotropic and lusitropic effects of catecholamines in human failing myocardium. Experimental approach Right and left ventricular trabeculae from freshly explanted hearts of 5 non-β-blocker-treated and 15 metoprolol-treated patients with terminal heart failure were paced to contract at 1Hz. The effects of (-)-noradrenaline, mediated through β1-adrenoceptors (β2-adrenoceptors blocked with ICI118551), and (-)-adrenaline, mediated through β2-adrenoceptors (β1-adrenoceptors blocked with CGP20712A), were assessed in the absence and presence of PDE inhibitors. Catecholamine potencies were estimated from –logEC50s. Key results Cilostamide did not significantly potentiate the inotropic effects of the catecholamines in non-β-blocker-treated patients. Cilostamide caused greater potentiation (P=0.037) of the positive inotropic effects of (-)-adrenaline (0.78±0.12 log units) than (-)-noradrenaline (0.47±0.12 log units) in metoprolol-treated patients. Lusitropic effects of the catecholamines were also potentiated by cilostamide. Rolipram did not affect the inotropic and lusitropic potencies of (-)-noradrenaline or (-)-adrenaline on right and left ventricular trabeculae from metoprolol-treated patients. Conclusions and implications Metoprolol induces a control by PDE3 of ventricular effects mediated through both β1- and β2-adrenoceptors, thereby further reducing sympathetic cardiostimulation in patients with terminal heart failure. Concurrent therapy with a PDE3 blocker and metoprolol could conceivably facilitate cardiostimulation evoked by adrenaline through β2-adrenoceptors. PDE4 does not appear to reduce inotropic and lusitropic effects of catecholamines in failing human ventricle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The osteoimmunomodulatory property of bone biomaterials is a vital property determining the in vivo fate of the implants. Endowing bone biomaterials with favorable osteoimmunomodulatory properties is of great importance in triggering desired immune response and thus supports the bone healing process. Magnesium (Mg) has been recognized as a revolutionary metal for applications in orthopedics due to it being biodegradable, biocompatible, and having osteoconductive properties. However, Mg's high rate of degradation leads to an excessive inflammatory response and this has restricted its application in bone tissue engineering. In this study, β-tricalcium phosphate (β-TCP) was used to coat Mg scaffolds in an effort to modulate the detrimental osteoimmunomodulatory properties of Mg scaffolds, due to the reported favorable osteoimmunomodulatory properties of β-TCP. It was noted that macrophages switched to the M2 extreme phenotype in response to the Mg-β-TCP scaffolds, which could be due to the inhibition of the toll like receptor (TLR) signaling pathway. VEGF and BMP2 were significantly upregulated in the macrophages exposed to Mg-β-TCP scaffolds, indicating pro-osteogenic properties of macrophages in β-TCP modified Mg scaffolds. This was further demonstrated by the macrophage-mediated osteogenic differentiation of bone marrow stromal cells (BMSCs). When BMSCs were stimulated by conditioned medium from macrophages cultured on Mg-β-TCP scaffolds, osteogenic differentiation of BMSCs was significantly enhanced; whereas osteoclastogenesis was inhibited, as indicated by the downregualtion of MCSF, TRAP and inhibition of the RANKL/RANK system. These findings suggest that β-TCP coating of Mg scaffolds can modulate the scaffold's osteoimmunomodulatory properties, shift the immune microenvironment towards one that favors osteogenesis over osteoclastogenesis. Endowing bone biomaterials with favorable osteoimmunomodulatory properties can be a highly valuable strategy for the development or modification of advanced bone biomaterials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Gastrointestinal graft-versus-host disease (GI-GvHD) is extremely debilitating and is multifactorial in its causative factors, management and treatment. It is an exaggeration of normal physiological mechanisms wherein the donor immune system attempts to rid itself of the host. The inflammatory process that follows has the benefit of providing an anti-tumour effect for many diseases, but unfortunately in patients undergoing human stem-cell transplantation, the nature of the inflammation can result in disability, wasting and death. AIM: The aim of this article is to discuss the pathophysiology of this often misunderstood or misdiagnosed condition, as well as its signs and symptoms, management and considerations for nursing care. Considerations for nursing practice: While the medical management is aimed at minimising GvHD through the reduction of T-cell production and proliferation and gastrointestinal decolonisation, the nursing care is often focused on the signs and symptoms that can have the most prominent impact on patients. CONCLUSION: GI-GvHD has serious life-threatening complications, namely wasting syndrome, diarrhoea and dehydration. The basis of signs and symptomology is easily recognisable owing to the stages of progression through the human stem-cell transplantation process. Oncology nurses are in a prime position to identify these serious risks, initiate treatment immediately and collaborate effectively within the multidisciplinary team to minimise GvHD onset and provide expert support to patients, family and caregivers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The role of human adenoviruses (HAdVs) in chronic respiratory disease pathogenesis is recognized. However, no studies have performed molecular sequencing of HAdVs from the lower airways of children with chronic endobronchial suppuration. We thus examined the major HAdV genotypes/species, and relationships to bacterial coinfection, in children with protracted bacterial bronchitis (PBB) and mild bronchiectasis (BE). Methods Bronchoalveolar lavage (BAL) samples of 245 children with PBB or mild (cylindrical) BE were included in this prospective cohort study. HAdVs were genotyped (when possible) in those whose BAL had HAdV detected (HAdV+). Presence of bacterial infection (defined as ≥104 colony-forming units/mL) was compared between BAL HAdV+ and HAdV negative (HAdV−) groups. Immune function tests were performed including blood lymphocyte subsets in a random subgroup. Results Species C HAdVs were identified in 23 of 24 (96%) HAdV+ children; 13 (57%) were HAdV-1 and 10 (43%) were HAdV-2. An HAdV+ BAL was significantly associated with bacterial coinfection with Haemophilus influenzae, Moraxella catarrhalis, or Streptococcus pneumoniae (odds ratio [OR], 3.27; 95% confidence interval, 1.38–7.75; P = .007) and negatively associated with Staphylococcus aureus infection (P = .03). Young age was related to increased rates of HAdV+. Blood CD16 and CD56 natural killer cells were significantly more likely to be elevated in those with HAdV (80%) compared with those without (56.1%) (P = .027). Conclusions HAdV-C is the major HAdV species detected in the lower airways of children with PBB and BE. Younger age appears to be an important risk factor for HAdV+ of the lower airways and influences the likelihood of bacterial coinfection

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregation and biofilm formation are critical mechanisms for bacterial resistance to host immune factors and antibiotics. Autotransporter (AT) proteins, which represent the largest group of outer-membrane and secreted proteins in Gram-negative bacteria, contribute significantly to these phenotypes. Despite their abundance and role in bacterial pathogenesis, most AT proteins have not been structurally characterized, and there is a paucity of detailed information with regard to their mode of action. Here we report the structure–function relationships of Antigen 43 (Ag43a), a prototypic self-associating AT protein from uropathogenic Escherichia coli. The functional domain of Ag43a displays a twisted L-shaped β-helical structure firmly stabilized by a 3D hydrogen-bonded scaffold. Notably, the distinctive Ag43a L shape facilitates self-association and cell aggregation. Combining all our data, we define a molecular “Velcro-like” mechanism of AT-mediated bacterial clumping, which can be tailored to fit different bacterial lifestyles such as the formation of biofilms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urinary tract infections (UTI) are among the most common infectious diseases of humans and are the most common nosocomial infections in the developed world. It is estimated that 40–50% of women and 5% of men will develop a UTI in their lifetime, and UTI accounts for more than 1 million hospitalizations and $1.6 billion in medical expenses each year in the USA. Uropathogenic Escherichia coli (UPEC) is the primary cause of UTI. This review presents an overview of recent discoveries related to the primary virulence factors of UPEC and major innate immune responses to infection of the lower urinary tract. New and emerging themes in UPEC research are discussed in the context of the interface between host and pathogen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Urinary tract infection (UTI) is among the most common infectious diseases of humans and is the most common nosocomial infection in the developed world. They cause significant morbidity and mortality, with approximately 150 million cases globally per year. It is estimated that 40-50% of women and 5% of men will develop a UTI in their lifetime, and UTI accounts for more than 1 million hospitalizations and $1.6 billion in medical expenses each year in the USA. Uropathogenic E. coli (UPEC) is the primary cause of UTI. This review presents an overview of the primary virulence factors of UPEC, the major host responses to infection of the urinary tract, the emergence of specific multidrug resistant clones of UPEC, antibiotic treatment options for UPEC-mediated UTI and the current state of vaccine strategies as well as other novel anti-adhesive and prophylactic approaches to prevent UTI. New and emerging themes in UPEC research are also discussed in the context of future outlooks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodontitis is an inflammatory disease that causes osteolysis and tooth loss. It is known that the nuclear factor kappa B (NF-κB) signalling pathway plays a key role in the progression of inflammation and osteoclastogenesis in periodontitis. Parthenolide (PTL), a sesquiterpene lactone extracted from the shoots of Tanacetum parthenium, has been shown to possess anti-inflammatory properties in various diseases. In the study reported herein, we investigated the effects of PTL on the inflammatory and osteoclastogenic response of human periodontal ligament-derived cells (hPDLCs) and revealed the signalling pathways in this process. Our results showed that PTL decreased NF-κB activation, I-κB degradation, and ERK activation in hPDLCs. PTL significantly reduced the expression of inflammatory (IL-1β, IL-6, and TNF-α) and osteoclastogenic (RANKL, OPG, and M-CSF) genes in LPS-stimulated hPDLCs. In addition, PTL attenuated hPDLC-induced osteoclastogenic differentiation of macrophages (RAW264.7 cells), as well as reducing gene expression of osteoclast-related markers in RAW264.7 cells in an hPDLC-macrophage coculture model. Taken together, these results demonstrate the anti-inflammatory and antiosteoclastogenic activities of PTL in hPDLCs in vitro. These data offer fundamental evidence supporting the potential use of PTL in periodontitis treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particulates with specific sizes and characteristics can induce potent immune responses by promoting antigen uptake of appropriate immuno-stimulatory cell types. Magnetite (Fe3O4) nanoparticles have shown many potential bioapplications due to their biocompatibility and special characteristics. Here, superparamagnetic Fe3O4 nanoparticles (SPIONs) with high magnetization value (70emug-1) were stabilized with trisodium citrate and successfully conjugated with a model antigen (ovalbumin, OVA) via N,N'-carbonyldiimidazole (CDI) mediated reaction, to achieve a maximum conjugation capacity at approximately 13μgμm-2. It was shown that different mechanisms governed the interactions between the OVA molecules and magnetite nanoparticles at different pH conditions. We evaluated as-synthesized SPION against commercially available magnetite nanoparticles. The cytotoxicity of these nanoparticles was investigated using mammalian cells. The reported CDI-mediated reaction can be considered as a potential approach in conjugating biomolecules onto magnetite or other biodegradable nanoparticles for vaccine delivery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Infectious diseases such as SARS, influenza and bird flu may spread exponentially throughout communities. In fact, most infectious diseases remain major health risks due to the lack of vaccine or the lack of facilities to deliver the vaccines. Conventional vaccinations are based on damaged pathogens, live attenuated viruses and viral vectors. If the damage was not complete, the vaccination itself may cause adverse effects. Therefore, researchers have been prompted to prepare viable replacements for the attenuated vaccines that would be more effective and safer to use. DNA vaccines are generally composed of a double stranded plasmid that includes a gene encoding the target antigen under the transcriptional directory and control of a promoter region which is active in cells. Plasmid DNA (pDNA) vaccines allow the foreign genes to be expressed transiently in cells, mimicking intracellular pathogenic infection and inducing both humoral and cellular immune responses. Currently, because of their highly evolved and specialized components, viral systems are the most effective means for DNA delivery, and they achieve high efficiencies (generally >90%), for both DNA delivery and expression. As yet, viral-mediated deliveries have several limitations, including toxicity, limited DNA carrying capacity, restricted target to specific cell types, production and packing problems, and high cost. Thus, nonviral systems, particularly a synthetic DNA delivery system, are highly desirable in both research and clinical applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transfusion-related acute lung injury (TRALI) has been the leading cause of transfusion-related morbidity and mortality in the UK and the USA in recent years. A threshold mechanism of TRALI has been proposed in which both patient factors (type and/or severity of clinical insult) and blood product factors (strength and/or concentration of antibodies or biological response modifiers) interact to surpass a threshold for TRALI development (Bux et al. Br J Haematol; 2007; 136: 788-99). The risk of developing antibody-mediated TRALI has been minimised by the introduction of risk-reduction strategies such as limiting the use of plasma from female donors. In contrast, there are no strategies currently in place to mitigate the development of non-antibody mediated TRALI as the mechanisms remain largely undefined. Previous studies have implicated non-polar lipids such as arachidonic acid and various species of hydroxyeicosatetranoic acid (HETE) in the development of non-antibody mediated TRALI (Silliman et al. Transfusion; 2011; 51: 2549-54), however the contribution of these lipids to the development of an inflammatory response in TRALI is poorly understood.