362 resultados para complex wavelet transform
Resumo:
Traditionally, the aquisition of skills and sport movement has been characterised by numerous repetitions of presumed model movement pattern to be acquired by learners. This approach has been questioned by research identifying the presence of individualised movement patterns and the low probability of occurrence of two identical movements within and between individuals. In contrast, the differential learning approach claims advantage for incurring variability in the learning process by adding stochastic perturbations during practice. These ideas are exemplified by data from a high jump experiment which compared the effectiveness of classical and a differential training approach with pre-post test design. Results showed clear advantages for the group with additional stochastic perturbation during the aquisition phase in comparison to classically trained athletes. Analogies to similar phenomenological effects in the neurobiological literature are discussed.
Resumo:
In the study of complex neurobiological movement systems, measurement indeterminacy has typically been overcome by imposing artificial modelling constraints to reduce the number of unknowns (e.g., reducing all muscle, bone and ligament forces crossing a joint to a single vector). However, this approach prevents human movement scientists from investigating more fully the role, functionality and ubiquity of coordinative structures or functional motor synergies. Advancements in measurement methods and analysis techniques are required if the contribution of individual component parts or degrees of freedom of these task-specific structural units is to be established, thereby effectively solving the indeterminacy problem by reducing the number of unknowns. A further benefit of establishing more of the unknowns is that human movement scientists will be able to gain greater insight into ubiquitous processes of physical self-organising that underpin the formation of coordinative structures and the confluence of organismic, environmental and task constraints that determine the exact morphology of these special-purpose devices.
Resumo:
Context The School of Information Technology at QUT has recently undertaken a major restructuring of their Bachelor of Information Technology (BIT) course. Some of the aims of this restructuring include a reduction in first year attrition and to provide an attractive degree course that meets both student and industry expectations. Emphasis has been placed on the first semester in the context of retaining students by introducing a set of four units that complement one another and provide introductory material on technology, programming and related skills, and generic skills that will aid the students throughout their undergraduate course and in their careers. This discussion relates to one of these four fist semester units, namely Building IT Systems. The aim of this unit is to create small Information Technology (IT) systems that use programming or scripting, databases as either standalone applications or web applications. In the prior history of teaching introductory computer programming at QUT, programming has been taught as a stand alone subject and integration of computer applications with other systems such as databases and networks was not undertaken until students had been given a thorough grounding in those topics as well. Feedback has indicated that students do not believe that working with a database requires programming skills. In fact, the teaching of the building blocks of computer applications have been compartmentalized and taught in isolation from each other. The teaching of introductory computer programming has been an industry requirement of IT degree courses as many jobs require at least some knowledge of the topic. Yet, computer programming is not a skill that all students have equal capabilities of learning (Bruce et al., 2004) and this is clearly shown by the volume of publications dedicated to this topic in the literature over a broad period of time (Eckerdal & Berglund, 2005; Mayer, 1981; Winslow, 1996). The teaching of this introductory material has been done pretty much the same way over the past thirty years. During this period of time that introductory computer programming courses have been taught at QUT, a number of different programming languages and programming paradigms have been used and different approaches to teaching and learning have been attempted in an effort to find the golden thread that would allow students to learn this complex topic. Unfortunately, computer programming is not a skill that can be learnt in one semester. Some basics can be learnt but it can take many years to master (Norvig, 2001). Faculty data typically has shown a bimodal distribution of results for students undertaking introductory programming courses with a high proportion of students receiving a high mark and a high proportion of students receiving a low or failing mark. This indicates that there are students who understand and excel with the introductory material while there is another group who struggle to understand the concepts and practices required to be able to translate a specification or problem statement into a computer program that achieves what is being requested. The consequence of a large group of students failing the introductory programming course has been a high level of attrition amongst first year students. This attrition level does not provide good continuity in student numbers in later years of the degree program and the current approach is not seen as sustainable.
Resumo:
When complex projects go wrong they can go horribly wrong with severe financial consequences. We are undertaking research to develop leading performance indicators for complex projects, metrics to provide early warning of potential difficulties. The assessment of success of complex projects can be made by a range of stakeholders over different time scales, against different levels of project results: the project’s outputs at the end of the project; the project’s outcomes in the months following project completion; and the project’s impact in the years following completion. We aim to identify leading performance indicators, which may include both success criteria and success factors, and which can be measured by the project team during project delivery to forecast success as assessed by key stakeholders in the days, months and years following the project. The hope is the leading performance indicators will act as alarm bells to show if a project is diverting from plan so early corrective action can be taken. It may be that different combinations of the leading performance indicators will be appropriate depending on the nature of project complexity. In this paper we develop a new model of project success, whereby success is assessed by different stakeholders over different time frames against different levels of project results. We then relate this to measurements that can be taken during project delivery. A methodology is described to evaluate the early parts of this model. Its implications and limitations are described. This paper describes work in progress.
Resumo:
Structural health monitoring (SHM) is the term applied to the procedure of monitoring a structure’s performance, assessing its condition and carrying out appropriate retrofitting so that it performs reliably, safely and efficiently. Bridges form an important part of a nation’s infrastructure. They deteriorate due to age and changing load patterns and hence early detection of damage helps in prolonging the lives and preventing catastrophic failures. Monitoring of bridges has been traditionally done by means of visual inspection. With recent developments in sensor technology and availability of advanced computing resources, newer techniques have emerged for SHM. Acoustic emission (AE) is one such technology that is attracting attention of engineers and researchers all around the world. This paper discusses the use of AE technology in health monitoring of bridge structures, with a special focus on analysis of recorded data. AE waves are stress waves generated by mechanical deformation of material and can be recorded by means of sensors attached to the surface of the structure. Analysis of the AE signals provides vital information regarding the nature of the source of emission. Signal processing of the AE waveform data can be carried out in several ways and is predominantly based on time and frequency domains. Short time Fourier transform and wavelet analysis have proved to be superior alternatives to traditional frequency based analysis in extracting information from recorded waveform. Some of the preliminary results of the application of these analysis tools in signal processing of recorded AE data will be presented in this paper.
Resumo:
The molecular and metal profile fingerprints were obtained from a complex substance, Atractylis chinensis DC—a traditional Chinese medicine (TCM), with the use of the high performance liquid chromatography (HPLC) and inductively coupled plasma atomic emission spectroscopy (ICP-AES) techniques. This substance was used in this work as an example of a complex biological material, which has found application as a TCM. Such TCM samples are traditionally processed by the Bran, Cut, Fried and Swill methods, and were collected from five provinces in China. The data matrices obtained from the two types of analysis produced two principal component biplots, which showed that the HPLC fingerprint data were discriminated on the basis of the methods for processing the raw TCM, while the metal analysis grouped according to the geographical origin. When the two data matrices were combined into a one two-way matrix, the resulting biplot showed a clear separation on the basis of the HPLC fingerprints. Importantly, within each different grouping the objects separated according to their geographical origin, and they ranked approximately in the same order in each group. This result suggested that by using such an approach, it is possible to derive improved characterisation of the complex TCM materials on the basis of the two kinds of analytical data. In addition, two supervised pattern recognition methods, K-nearest neighbors (KNNs) method, and linear discriminant analysis (LDA), were successfully applied to the individual data matrices—thus, supporting the PCA approach.
Resumo:
Spatial information captured from optical remote sensors on board unmanned aerial vehicles (UAVs) has great potential in automatic surveillance of electrical infrastructure. For an automatic vision-based power line inspection system, detecting power lines from a cluttered background is one of the most important and challenging tasks. In this paper, a novel method is proposed, specifically for power line detection from aerial images. A pulse coupled neural filter is developed to remove background noise and generate an edge map prior to the Hough transform being employed to detect straight lines. An improved Hough transform is used by performing knowledge-based line clustering in Hough space to refine the detection results. The experiment on real image data captured from a UAV platform demonstrates that the proposed approach is effective for automatic power line detection.
Resumo:
Light Detection and Ranging (LIDAR) has great potential to assist vegetation management in power line corridors by providing more accurate geometric information of the power line assets and vegetation along the corridors. However, the development of algorithms for the automatic processing of LIDAR point cloud data, in particular for feature extraction and classification of raw point cloud data, is in still in its infancy. In this paper, we take advantage of LIDAR intensity and try to classify ground and non-ground points by statistically analyzing the skewness and kurtosis of the intensity data. Moreover, the Hough transform is employed to detected power lines from the filtered object points. The experimental results show the effectiveness of our methods and indicate that better results were obtained by using LIDAR intensity data than elevation data.
Resumo:
The wavelet packet transform decomposes a signal into a set of bases for time–frequency analysis. This decomposition creates an opportunity for implementing distributed data mining where features are extracted from different wavelet packet bases and served as feature vectors for applications. This paper presents a novel approach for integrated machine fault diagnosis based on localised wavelet packet bases of vibration signals. The best basis is firstly determined according to its classification capability. Data mining is then applied to extract features and local decisions are drawn using Bayesian inference. A final conclusion is reached using a weighted average method in data fusion. A case study on rolling element bearing diagnosis shows that this approach can greatly improve the accuracy ofdiagno sis.
Resumo:
Industrial applications of the simulated-moving-bed (SMB) chromatographic technology have brought an emergent demand to improve the SMB process operation for higher efficiency and better robustness. Improved process modelling and more-efficient model computation will pave a path to meet this demand. However, the SMB unit operation exhibits complex dynamics, leading to challenges in SMB process modelling and model computation. One of the significant problems is how to quickly obtain the steady state of an SMB process model, as process metrics at the steady state are critical for process design and real-time control. The conventional computation method, which solves the process model cycle by cycle and takes the solution only when a cyclic steady state is reached after a certain number of switching, is computationally expensive. Adopting the concept of quasi-envelope (QE), this work treats the SMB operation as a pseudo-oscillatory process because of its large number of continuous switching. Then, an innovative QE computation scheme is developed to quickly obtain the steady state solution of an SMB model for any arbitrary initial condition. The QE computation scheme allows larger steps to be taken for predicting the slow change of the starting state within each switching. Incorporating with the wavelet-based technique, this scheme is demonstrated to be effective and efficient for an SMB sugar separation process. Moreover, investigations are also carried out on when the computation scheme should be activated and how the convergence of the scheme is affected by a variable stepsize.
Resumo:
The unusual (1:1) complex ‘adduct’ salt of copper(II) with 4,5-dichlorophthalic acid (H2DCPA), having formula [Cu(H2O)4(C8H3Cl2O4) (C8H4Cl2O4)] . (C8H3Cl2O4) has been synthesized and characterized using single-crystal X-ray diffraction. Crystals are monoclinic, space group P21/c, with Z = 4 in a cell with dimensions a = 20.1376(7), b =12.8408(4) c = 12.1910(4) Å, β = 105.509(4)o. The complex is based on discrete tetragonally distorted octahedral [CuO6] coordination centres with the four water ligands occupying the square planar sites [Cu-O, 1.962(4)-1.987(4) Å] and the monodentate carboxyl-O donors of two DCPA ligand species in the axial sites. The first of these bonds [Cu-O, 2.341(4) Å] is with an oxygen of a HDCPA monoanion, the second with an oxygen of a H2DCPA acid species [Cu-O, 2.418(4) Å]. The un-coordinated ‘adduct’ molecule is a HDCPA counter anion which is strongly hydrogen-bonded to the coordinated H2DCPA ligand [O… O, 2.503(6) Å] while a number of peripheral intra- and intermolecular hydrogen-bonding interactions give a two-dimensional network structure.
Resumo:
User-Based intelligent systems are already commonplace in a student’s online digital life. Each time they browse, search, buy, join, comment, play, travel, upload, download, a system collects, analyses and processes data in an effort to customise content and further improve services. This panel session will explore how intelligent systems, particularly those that gather data from mobile devices, can offer new possibilities to assist in the delivery of customised, personal and engaging learning experiences. The value of intelligent systems for education lies in their ability to formulate authentic and complex learner profiles that bring together and systematically integrate a student’s personal world with a formal curriculum framework. As we well know, a mobile device can collect data relating to a student’s interests (gathered from search history, applications and communications), location, surroundings and proximity to others (GPS, Bluetooth). However, what has been less explored is the opportunity for a mobile device to map the movements and activities of a student from moment to moment and over time. This longitudinal data provides a holistic profile of a student, their state and surroundings. Analysing this data may allow us to identify patterns that reveal a student’s learning processes; when and where they work best and for how long. Through revealing a student’s state and surroundings outside of schools hour, this longitudinal data may also highlight opportunities to transform a student’s everyday world into an inventory for learning, punctuating their surroundings with learning recommendations. This would in turn lead to new ways to acknowledge and validate and foster informal learning, making it legitimate within a formal curriculum.