161 resultados para cardiometabolic biomarkers
Resumo:
Alterations in cognitive function are characteristic of the aging process in humans and other animals. However, the nature of these age related changes in cognition is complex and is likely to be influenced by interactions between genetic predispositions and environmental factors resulting in dynamic fluctuations within and between individuals. These inter and intra-individual fluctuations are evident in both so-called normal cognitive aging and at the onset of cognitive pathology. Mild Cognitive Impairment (MCI), thought to be a prodromal phase of dementia, represents perhaps the final opportunity to mitigate cognitive declines that may lead to terminal conditions such as dementia. The prognosis for people with MCI is mixed with the evidence suggesting that many will remain stable within 10-years of diagnosis, many will improve, and many will transition to dementia. If the characteristics of people who do not progress to dementia from MCI can be identified and replicated in others it may be possible to reduce or delay dementia onset, thus reducing a growing personal and public health burden. Furthermore, if MCI onset can be prevented or delayed, the burden of cognitive decline in aging populations worldwide may be reduced. A cognitive domain that is sensitive to the effects of advancing age, and declines in which have been shown to presage the onset of dementia in MCI patients, is executive function. Moreover, environmental factors such as diet and physical activity have been shown to affect performance on tests of executive function. For example, improvements in executive function have been demonstrated as a result of increased aerobic and anaerobic physical activity and, although the evidence is not as strong, findings from dietary interventions suggest certain nutrients may preserve or improve executive functions in old age. These encouraging findings have been demonstrated in older adults with MCI and their non-impaired peers. However, there are some gaps in the literature that need to be addressed. For example, little is known about the effect on cognition of an interaction between diet and physical activity. Both are important contributors to health and wellbeing, and a growing body of evidence attests to their importance in mental and cognitive health in aging individuals. Yet physical activity and diet are rarely considered together in the context of cognitive function. There is also little known about potential underlying biological mechanisms that might explain the physical activity/diet/cognition relationship. The first aim of this program of research was to examine the individual and interactive role of physical activity and diet, specifically long chain polyunsaturated fatty acid consumption(LCn3) as predictors of MCI status. The second aim is to examine executive function in MCI in the context of the individual and interactive effects of physical activity and LCn3.. A third aim was to explore the role of immune and endocrine system biomarkers as possible mediators in the relationship between LCn3, physical activity and cognition. Study 1a was a cross-sectional analysis of MCI status as a function of erythrocyte proportions of an interaction between physical activity and LCn3. The marine based LCn3s eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have both received support in the literature as having cognitive benefits, although comparisons of the relative benefits of EPA or DHA, particularly in relation to the aetiology of MCI, are rare. Furthermore, a limited amount of research has examined the cognitive benefits of physical activity in terms of MCI onset. No studies have examined the potential interactive benefits of physical activity and either EPA or DHA. Eighty-four male and female adults aged 65 to 87 years, 50 with MCI and 34 without, participated in Study 1a. A logistic binary regression was conducted with MCI status as a dependent variable, and the individual and interactive relationships between physical activity and either EPA or DHA as predictors. Physical activity was measured using a questionnaire and specific physical activity categories were weighted according to the metabolic equivalents (METs) of each activity to create a physical activity intensity index (PAI). A significant relationship was identified between MCI outcome and the interaction between the PAI and EPA; participants with a higher PAI and higher erythrocyte proportions of EPA were more likely to be classified as non-MCI than their less active peers with less EPA. Study 1b was a randomised control trial using the participants from Study 1a who were identified with MCI. Given the importance of executive function as a determinant of progression to more severe forms of cognitive impairment and dementia, Study 1b aimed to examine the individual and interactive effect of physical activity and supplementation with either EPA or DHA on executive function in a sample of older adults with MCI. Fifty male and female participants were randomly allocated to supplementation groups to receive 6-months of supplementation with EPA, or DHA, or linoleic acid (LA), a long chain polyunsaturated omega-6 fatty acid not known for its cognitive enhancing properties. Physical activity was measured using the PAI from Study 1a at baseline and follow-up. Executive function was measured using five tests thought to measure different executive function domains. Erythrocyte proportions of EPA and DHA were higher at follow-up; however, PAI was not significantly different. There was also a significant improvement in three of the five executive function tests at follow-up. However, regression analyses revealed that none of the variance in executive function at follow-up was predicted by EPA, DHA, PAI, the EPA by PAI interaction, or the DHA by PAI interaction. The absence of an effect may be due to a small sample resulting in limited power to find an effect, the lack of change in physical activity over time in terms of volume and/or intensity, or a combination of both reduced power and no change in physical activity. Study 2a was a cross-sectional study using cognitively unimpaired older adults to examine the individual and interactive effects of LCn3 and PAI on executive function. Several possible explanations for the absence of an effect were identified. From this consideration of alternative explanations it was hypothesised that post-onset interventions with LCn3 either alone or in interation with self-reported physical activity may not be beneficial in MCI. Thus executive function responses to the individual and interactive effects of physical activity and LCn3 were examined in a sample of older male and female adults without cognitive impairment (n = 50). A further aim of study 2a was to operationalise executive function using principal components analysis (PCA) of several executive function tests. This approach was used firstly as a data reduction technique to overcome the task impurity problem, and secondly to examine the executive function structure of the sample for evidence of de-differentiation. Two executive function components were identified as a result of the PCA (EF 1 and EF 2). However, EPA, DHA, the PAI, or the EPA by PAI or DHA by PAI interactions did not account for any variance in the executive function components in subsequent hierarchical multiple regressions. Study 2b was an exploratory correlational study designed to explore the possibility that immune and endocrine system biomarkers may act as mediators of the relationship between LCn3, PAI, the interaction between LCn3 and PAI, and executive functions. Insulin-like growth factor-1 (IGF-1), an endocrine system growth hormone, and interleukin-6 (IL-6) an immune system cytokine involved in the acute inflammatory response, have both been shown to affect cognition including executive functions. Moreover, IGF-1 and IL-6 have been shown to be antithetical in so far as chronically increased IL-6 has been associated with reduced IGF-1 levels, a relationship that has been linked to age related morbidity. Further, physical activity and LCn3 have been shown to modulate levels of both IGF-1 and IL-6. Thus, it is possible that the cognitive enhancing effects of LCn3, physical activity or their interaction are mediated by changes in the balance between IL-6 and IGF-1. Partial and non-parametric correlations were conducted in a subsample of participants from Study 2a (n = 13) to explore these relationships. Correlations of interest did not reach significance; however, the coefficients were quite large for several relationships suggesting studies with larger samples may be warranted. In summary, the current program of research found some evidence supporting an interaction between EPA, not DHA, and higher energy expenditure via physical activity in differentiating between older adults with and without MCI. However, a RCT examining executive function in older adults with MCI found no support for increasing EPA or DHA while maintaining current levels of energy expenditure. Furthermore, a cross-sectional study examining executive function in older adults without MCI found no support for better executive function performance as a function of increased EPA or DHA consumption, greater energy expenditure via physical activity or an interaction between physical activity and either EPA or DHA. Finally, an examination of endocrine and immune system biomarkers revealed promising relationships in terms of executive function in non-MCI older adults particularly with respect to LCn3 and physical activity. Taken together, these findings demonstrate a potential benefit of increasing physical activity and LCn3 consumption, particularly EPA, in mitigating the risk of developing MCI. In contrast, no support was found for a benefit to executive function as a result of increased physical activity, LCn3 consumption or an interaction between physical activity and LCn3, in participants with and without MCI. These results are discussed with reference to previous findings in the literature including possible limitations and opportunities for future research.
Resumo:
BACKGROUND: Epidemiologic research has demonstrated that cutaneous markers of photo-damage are associated with risk of basal cell carcinoma (BCC). However there has been no previous attempt to calculate pooled risk estimates. METHODS: We conducted a systematic review and meta-analysis after extracting relevant studies published up to January 2013 from five electronic databases. Eligible studies were those that permitted quantitative assessment of the association between histologically-confirmed BCC and actinic keratoses, solar elastosis, solar lentigines, or telangiectasia. RESULTS: Seven eligible studies were identified and summary odds ratios (OR) were calculated using both random and quality effects models. Having more than ten actinic keratoses was most strongly associated with BCC, conferring up to a 5-fold increase in risk (OR: 4.97; 95% CI: 3.26, 7.58). Other factors, including solar elastosis, solar lentigines, and telangiectasia had weaker but positive associations with BCC with ORs around 1.5. CONCLUSIONS: Markers of chronic photo-damage are positively associated with BCC. The presence of actinic keratoses was the most strongly associated with BCC of the markers examined. IMPACT: This work highlights the relatively modest association between markers of chronic ultraviolet exposure and BCC.
Resumo:
Matrix metalloproteinases (MMPs) are proteolytic enzymes important to wound healing. In non-healing wounds, it has been suggested that MMP levels become dysfunctional, hence it is of great interest to develop sensors to detect MMP biomarkers. This study presents the development of a label-free optical MMP biosensor based on a functionalised porous silicon (pSi) thin film. The biosensor is fabricated by immobilising a peptidomimetic MMP inhibitor in the porous layer using hydrosilylation followed by amide coupling. The binding of MMP to the immobilised inhibitor translates into a change of effective optical thickness (EOT) over the time. We investigate the effect of surface functionalisation on the stability of pSi surface and evaluate the sensing performance. We successfully demonstrate MMP detection in buffer solution and human wound fluid at physiologically relevant concentrations. This biosensor may find application as a point-of-care device that is prognostic of the healing trajectory of chronic wounds.
Resumo:
To enhance the therapeutic efficacy and reduce the adverse effects of traditional Chinese medicine, practitioners often prescribe combinations of plant species and/or minerals, called formulae. Unfortunately, the working mechanisms of most of these compounds are difficult to determine and thus remain unknown. In an attempt to address the benefits of formulae based on current biomedical approaches, we analyzed the components of Yinchenhao Tang, a classical formula that has been shown to be clinically effective for treating hepatic injury syndrome. The three principal components of Yinchenhao Tang are Artemisia annua L., Gardenia jasminoids Ellis, and Rheum Palmatum L., whose major active ingredients are 6,7-dimethylesculetin (D), geniposide (G), and rhein (R), respectively. To determine the mechanisms underlying the efficacy of this formula, we conducted a systematic analysis of the therapeutic effects of the DGR compound using immunohistochemistry, biochemistry, metabolomics, and proteomics. Here, we report that the DGR combination exerts a more robust therapeutic effect than any one or two of the three individual compounds by hitting multiple targets in a rat model of hepatic injury. Thus, DGR synergistically causes intensified dynamic changes in metabolic biomarkers, regulates molecular networks through target proteins, has a synergistic/additive effect, and activates both intrinsic and extrinsic pathways.
Resumo:
In this study, the promising metabolomic approach integrating with ingenuity pathway analysis (IPA) was applied to characterize the tissue specific metabolic perturbation of rats that was induced by indomethacin. The selective pattern recognition analyses were applied to analyze global metabolic profiling of urine of rats treated by indomethacin at an acute dosage of reference that has been proven to induce tissue disorders in rats, evaluated throughout the time-course of -24-72 h. The results preliminarily revealed that modifications of amino acid metabolism, fatty acid metabolism and energetically associated metabolic pathways accounted for metabolic perturbation of the rats that was induced by indomethacin. Furthermore, IPA was applied to deeply analyze the biomarkers and their relations with the metabolic perturbations evidenced by pattern recognition analyses. Specific biochemical functions affected by indomethacin suggested that there is an important correlation of its effects in kidney and liver metabolism, based on the determined metabolites and their pathway-based analysis. The IPA correlation of the three major biomarkers, identified as creatinine, prostaglandin E2 and guanosine, suggested that the administration of indomethacin induced certain levels of toxicity in the kidneys and liver. The changes in the levels of biomarker metabolites allowed the phenotypical determination of the metabolic perturbations induced by indomethacin in a time-dependent manner.
Resumo:
We introduce the use of Ingenuity Pathway Analysis to analyzing global metabonomics in order to characterize phenotypically biochemical perturbations and the potential mechanisms of the gentamicin-induced toxicity in multiple organs. A single dose of gentamicin was administered to Sprague Dawley rats (200 mg/kg, n = 6) and urine samples were collected at -24-0 h pre-dosage, 0-24, 24-48, 48-72 and 72-96 h post-dosage of gentamicin. The urine metabonomics analysis was performed by UPLC/MS, and the mass spectra signals of the detected metabolites were systematically deconvoluted and analyzed by pattern recognition analyses (Heatmap, PCA and PLS-DA), revealing a time-dependency of the biochemical perturbations induced by gentamicin toxicity. As result, the holistic metabolome change induced by gentamicin toxicity in the animal's organisms was characterized. Several metabolites involved in amino acid metabolism were identified in urine, and it was confirmed that gentamicin biochemical perturbations can be foreseen from these biomarkers. Notoriously, it was found that gentamicin induced toxicity in multiple organs system in the laboratory rats. The proof-of-knowledge based Ingenuity Pathway Analysis revealed gentamicin induced liver and heart toxicity, along with the previously known toxicity in kidney. The metabolites creatine, nicotinic acid, prostaglandin E2, and cholic acid were identified and validated as phenotypic biomarkers of gentamicin induced toxicity. Altogether, the significance of the use of metabonomics analyses in the assessment of drug toxicity is highlighted once more; furthermore, this work demonstrated the powerful predictive potential of the Ingenuity Pathway Analysis to study of drug toxicity and its valuable complementation for metabonomics based assessment of the drug toxicity.
Resumo:
Poor health and injury represent major obstacles to the future economic security of Australia. The national economic cost of work-related injury is estimated at $57.5 billion p/a. Since exposure to high physical demands is a major risk factor for musculoskeletal injury, monitoring and managing such physical activity levels in workers is a potentially important injury prevention strategy. Current injury monitoring practices are inadequate for the provision of clinically valuable information about the tissue specific responses to physical exertion. Injury of various soft tissue structures can manifest over time through accumulation of micro-trauma. Such micro-trauma has a propensity to increase the risk of acute injuries to soft-tissue structures such as muscle or tendon. As such, the capacity to monitor biomarkers that result from the disruption of these tissues offers a means of assisting the pre-emptive management of subclinical injury prior to acute failure or for evaluation of recovery processes. Here we have adopted an in-vivo exercise induced muscle damage model allowing the application of laboratory controlled conditions to assist in uncovering biochemical indicators associated with soft-tissue trauma and recovery. Importantly, urine was utilised as the diagnostic medium since it is non-invasive to collect, more acceptable to workers and less costly to employers. Moreover, it is our hypothesis that exercise induced tissue degradation products enter the circulation and are subsequently filtered by the kidney and pass through to the urine. To test this hypothesis a range of metabolomic and proteomic discovery-phase techniques were used, along with targeted approaches. Several small molecules relating to tissue damage were identified along with a series of skeletal muscle-specific protein fragments resulting from exercise induced soft-tissue damage. Each of the potential biomolecular markers appeared to be temporally present within urine. Moreover, the regulation of abundance seemed to be associated with functional recovery following the injury. This discovery may have important clinical applications for monitoring of a variety of inflammatory myopathies as well as novel applications in monitoring of the musculoskeletal health status of workers, professional athletes and/or military personnel to reduce the onset of potentially debilitating musculoskeletal injuries within these professions.
Resumo:
Members of the insulin-like growth factor (IGF) family have been shown to play critical roles in normal growth and development, as well as in tumour biology. The IGF system is complex and the biological effects of the IGFs are determined by their diverse interactions between many molecules, including their interactions with extracellular matrix (ECM) proteins. Recent studies have demonstrated that IGFs associate with the ECM protein vitronectin (VN) through IGF-binding proteins (IGFBP) and that this interaction modulates IGF-stimulated biological functions, namely cell migration and cell survival through the cooperative involvement of the type-I IGF receptor (IGF-1R) and VN-binding integrins. Since IGFs play important roles in the transformation and progression of breast cancer and VN has been found to be over-expressed at the leading edge of breast tumours, this project aimed to describe the effects of IGF-I:VN interactions on breast cell function. This was undertaken to dissect the molecular mechanisms underlying IGF-I:VN-induced responses and to design inhibitors to block the effects of such interactions. The studies described herein demonstrate that the increase in migration of MCF-7 breast cancer cells in response to the IGF-I:IGFBP-5:VN complex is accompanied by differential expression of genes known to be involved in migration, invasion and/or survival, including Tissue-factor (TF), Stratifin (SFN), Ephrin-B2, Sharp-2 and PAI-1. This „migration gene signature‟ was confirmed using real-time PCR analysis. Substitution of the native IGF-I within the IGF-I:IGFBP:VN complex with the IGF-I analogue, \[L24]\[A31]-IGF-I, which has a reduced affinity for the IGF-1R, failed to stimulate cell migration and interestingly, also failed to induce the differential gene expression. This supports the involvement of the IGF-1R in mediating these changes in gene expression. Furthermore, lentiviral shRNA-mediated stable knockdown of TF and SFN completely abrogated the increased cell migration induced by IGF-I:IGFBP:VN complexes in MCF-7 cells. Indeed, when these cells were grown in 3D Matrigel™ cultures a decrease in the overall size of the 3D spheroids in response to the IGF-I:IGFBP:VN complexes was observed compared to the parental MCF-7 cells. This suggests that TF and SFN have a role in complex-stimulated cell survival. Moreover, signalling studies performed on cells with the reduced expression of either TF or SFN had a decreased IGF-1R activation, suggesting the involvement of signalling pathways downstream of IGF-1R in TF- and/or SFN-mediated cell migration and cell survival. Taken together, these studies provide evidence for a common mechanism activated downstream of the IGF-1R that induces the expression of the „migration gene signature‟ in response to the IGF-I:IGFBP:VN complex that confers breast cancer cells the propensity to migrate and survive. Given the functional significance of the interdependence of ECM and growth factor (GF) interactions in stimulating processes key to breast cancer progression, this project aimed at developing strategies to prevent such growth factor:ECM interactions in an effort to inhibit the downstream functional effects. This may result in the reduction in the levels of ECM-bound IGF-I present in close proximity to the cells, thereby leading to a reduction in the stimulation of IGF-1R present on the cell surface. Indeed, the inhibition of IGF-I-mediated effects through the disruption of its association with ECM would not alter the physiological levels of IGF-I and potentially only exert effects in situations where abnormal over expression of ECM proteins are found; namely carcinomas and hyperproliferative diseases. In summary, this PhD project has identified novel, innovative and realistic strategies that can be used in vitro to inhibit the functions exerted by the IGF-I:IGFBP:VN multiprotein complexes critical for cancer progression, with a potential to be translated into in vivo investigations. Furthermore, TF and SFN were found to mediate IGF-I:IGFBP:VN-induced effects, thereby revealing their potential to be used as therapeutic targets or as predictive biomarkers for the efficacy of IGF-1R targeting therapies in breast cancer patients. In addition to its therapeutic and clinical scope, this PhD project has significantly contributed to the understanding of the role of the IGF system in breast tumour biology by providing valuable new information on the mechanistic events underpinning IGF-I:VN-mediated effects on breast cell functions. Furthermore, this is the first instance where favourable binding sites for IGF-II, IGFBP-3 and IGFBP-5 on VN have been identified. Taken together, this study has functionally characterised the interactions between IGF-I and VN and through innovative strategies has provided a platform for the development of novel therapies targeting these interactions and their downstream effects.
Resumo:
BACKGROUND & AIMS Metabolomics is comprehensive analysis of low-molecular-weight endogenous metabolites in a biological sample. It could enable mapping of perturbations of early biochemical changes in diseases and hence provide an opportunity to develop predictive biomarkers that could provide valuable insights into the mechanisms of diseases. The aim of this study was to elucidate the changes in endogenous metabolites and to phenotype the metabolic profiling of d-galactosamine (GalN)-inducing acute hepatitis in rats by UPLC-ESI MS. METHODS The systemic biochemical actions of GalN administration (ip, 400 mg/kg) have been investigated in male wistar rats using conventional clinical chemistry, liver histopathology and metabolomic analysis of UPLC- ESI MS of urine. The urine was collected predose (-24 to 0 h) and 0-24, 24-48, 48-72, 72-96 h post-dose. Mass spectrometry of the urine was analysed visually and via conjunction with multivariate data analysis. RESULTS Results demonstrated that there was a time-dependent biochemical effect of GalN dosed on the levels of a range of low-molecular-weight metabolites in urine, which was correlated with developing phase of the GalN-inducing acute hepatitis. Urinary excretion of beta-hydroxybutanoic acid and citric acid was decreased following GalN dosing, whereas that of glycocholic acid, indole-3-acetic acid, sphinganine, n-acetyl-l-phenylalanine, cholic acid and creatinine excretion was increased, which suggests that several key metabolic pathways such as energy metabolism, lipid metabolism and amino acid metabolism were perturbed by GalN. CONCLUSION This metabolomic investigation demonstrates that this robust non-invasive tool offers insight into the metabolic states of diseases.
Resumo:
Migraine is a debilitating neurovascular disorder, with a substantial genetic component. The exact cause of a migraine attack is unknown; however cortical hyperexcitability is thought to play a role. As Gamma-aminobutyric Acid (GABA) is the major inhibitory neurotransmitter in the brain, malfunctioning of this system may be a cause of the hyperexcitability. To date, there has been limited research examining the gene expression or genetics of GABA receptors in relation to migraine. The aim of our study was to determine if GABA receptors play a role in migraine by investigating their gene expression using profile in migraine affected individuals and non-affected controls by Q-PCR. Gene expression of GABA(A) receptor subunit isoforms (GABRA3, GABRB3, GABRQ) and GABA(B) receptor 2 (GABBR2) was quantified in mRNA obtained from peripheral blood leukocytes from 28 migraine subjects and 22 healthy control subjects. Analysis of results showed that two of the tested genes, GABRA3 and GABBR2, were significantly down regulated in migraineurs (P=0.018; P=0.017), compared to controls. Results from the other tested genes did not show significant gene expression variation. The results indicate that there may be specific GABA receptor gene expression variation in migraine, particularly involving the GABRA3 and GABBR2 genes. This study also identifies GABRA3 and GABBR2 as potential biomarkers to select migraineurs that may be more responsive to GABA agonists with future investigations in this area warranted.
Resumo:
Migraine is a paroxysmal neurological disorder affecting up to 6% of males and 18% of females in the general population, and has been demonstrated to have a strong, but complex, genetic component. Genetic investigation of migraine provides hope that new targets for medications and individual specific therapy will be developed. The identification of polymorphisms or genetic biomarkers for disease susceptibility and treatment should aid in providing a better understanding of migraine pathology and, consequently, more appropriate and efficient treatment for migraineurs. In this review, we will discuss results investigating genetic biomarkers for migraine and their potential role in future therapy planning.
Resumo:
Background & aims: - Excess adiposity (overweight) is one of numerous risk factors for cardiometabolic disease. Most risk reduction strategies for overweight rely on weight loss through dietary energy restriction. However, since the evidence base for long-term successful weight loss interventions is scant, it is important to identify strategies for risk reduction independent of weight loss. The aim of this study was to compare the effects of isoenergetic substitution of dietary saturated fat (SFA) with monounsaturated fat (MUFA) via macadamia nuts on coronary risk compared to usual diet in overweight adults. Methods: - A randomised controlled trial design, maintaining usual energy intake, but manipulating dietary lipid profile in a group of 64 (54 female, 10 male) overweight (BMI > 25), otherwise healthy, subjects. For the intervention group, energy intakes of usual (baseline) diets were calculated from multiple 3 day diet diaries, and SFA was replaced with MUFA (target: 50%E from fat as MUFA) by altering dietary SFA sources and adding macadamia nuts to the diet. Both control and intervention groups received advice on national guidelines for physical activity and adhered to the same protocol for diet diary record keeping and trial consultations. Anthropometric and clinical measures were taken at baseline and at 10 weeks. Results: A significant increase in brachial artery flow-mediated dilation (p < 0.05) was seen in the monounsaturated diet group at week 10 compared to baseline. This corresponded to significant decreases in waist circumference, total cholesterol (p < 0.05), plasma leptin and ICAM-1 (p < 0.01). Conclusions: - In patient subgroups where adherence to dietary energy-reduction is poor, isoenergetic interventions may improve endothelial function and other coronary risk factors without changes in body weight. This trial was registered with the Australia New Zealand Clinical Trial Registry (ACTRN12607000106437).
Resumo:
Background: Genome-wide association studies (GWAS) have identified more than 100 genetic loci for various cancers. However, only one is for endometrial cancer. Methods: We conducted a three-stage GWAS including 8,492 endometrial cancer cases and 16,596 controls. After analyzing 585,963 single-nucleotide polymorphisms (SNP) in 832 cases and 2,682 controls (stage I) from the Shanghai Endometrial Cancer Genetics Study, we selected the top 106 SNPs for in silico replication among 1,265 cases and 5,190 controls from the Australian/British Endometrial Cancer GWAS (stage II). Nine SNPs showed results consistent in direction with stage I with P < 0.1. These nine SNPs were investigated among 459 cases and 558 controls (stage IIIa) and six SNPs showed a direction of association consistent with stages I and II. These six SNPs, plus two additional SNPs selected on the basis of linkage disequilibrium and P values in stage II, were investigated among 5,936 cases and 8,166 controls from an additional 11 studies (stage IIIb). Results: SNP rs1202524, near the CAPN9 gene on chromosome 1q42.2, showed a consistent association with endometrial cancer risk across all three stages, with ORs of 1.09 [95% confidence interval (CI), 1.03–1.16] for the A/G genotype and 1.17 (95% CI, 1.05–1.30) for the G/G genotype (P = 1.6 × 10−4 in combined analyses of all samples). The association was stronger when limited to the endometrioid subtype, with ORs (95% CI) of 1.11 (1.04–1.18) and 1.21 (1.08–1.35), respectively (P = 2.4 × 10−5). Conclusions: Chromosome 1q42.2 may host an endometrial cancer susceptibility locus. Impact: This study identified a potential genetic locus for endometrial cancer risk
Resumo:
As of June 2009, 361 genome-wide association studies (GWAS) had been referenced by the HuGE database. GWAS require DNA from many thousands of individuals, relying on suitable DNA collections. We recently performed a multiple sclerosis (MS) GWAS where a substantial component of the cases (24%) had DNA derived from saliva. Genotyping was done on the Illumina genotyping platform using the Infinium Hap370CNV DUO microarray. Additionally, we genotyped 10 individuals in duplicate using both saliva- and blood-derived DNA. The performance of blood- versus saliva-derived DNA was compared using genotyping call rate, which reflects both the quantity and quality of genotyping per sample and the “GCScore,” an Illumina genotyping quality score, which is a measure of DNA quality. We also compared genotype calls and GCScores for the 10 sample pairs. Call rates were assessed for each sample individually. For the GWAS samples, we compared data according to source of DNA and center of origin. We observed high concordance in genotyping quality and quantity between the paired samples and minimal loss of quality and quantity of DNA in the saliva samples in the large GWAS sample, with the blood samples showing greater variation between centers of origin. This large data set highlights the usefulness of saliva DNA for genotyping, especially in high-density single-nucleotide polymorphism microarray studies such as GWAS.
Resumo:
Background & aims Depression has a complex association with cardiometabolic risk, both directly as an independent factor and indirectly through mediating effects on other risk factors such as BMI, diet, physical activity, and smoking. Since changes to many cardiometabolic risk factors involve behaviour change, the rise in depression prevalence as a major global health issue may present further challenges to long-term behaviour change to reduce such risk. This study investigated associations between depression scores and participation in a community-based weight management intervention trial. Methods A group of 64 overweight (BMI > 27), otherwise healthy adults, were recruited and randomised to follow either their usual diet, or an isocaloric diet in which saturated fat was replaced with monounsaturated fat (MUFA), to a target of 50% total fat, by adding macadamia nuts to the diet. Subjects were assessed for depressive symptoms at baseline and at ten weeks using the Beck Depression Inventory (BDI-II). Both control and intervention groups received advice on National Guidelines for Physical Activity and adhered to the same protocol for food diary completion and trial consultations. Anthropometric and clinical measurements (cholesterol, inflammatory mediators) also were taken at baseline and 10 weeks. Results During the recruitment phase, pre-existing diagnosed major depression was one of a range of reasons for initial exclusion of volunteers from the trial. Amongst enrolled participants, there was a significant correlation (R = −0.38, p < 0.05) between BDI-II scores at baseline and duration of participation in the trial. Subjects with a baseline BDI ≥10 (moderate to severe depression symptoms) were more likely to dropout of the trial before week 10 (p < 0.001). BDI-II scores in the intervention (MUFA) diet group decreased, but increased in the control group over the 10-week period. Univariate analysis of variance confirmed these observations (adjusted R2 = 0.257, p = 0.01). Body weight remained static over the 10-week period in the intervention group, corresponding to a relative increase in the control group (adjusted R2 = 0.097, p = 0.064). Conclusions Depression symptoms have the potential to affect enrolment in and adherence to dietbased risk reduction interventions, and may consequently influence the generalisability of such trials. Depression scores may therefore be useful for characterising, screening and allocating subjects to appropriate treatment pathways.