91 resultados para calcium sulphate
Resumo:
Tricalcium aluminate, hydrocalumite and residual lime have been identified as reversion contributing compounds after the seawater neutralisation of bauxite refinery residues. The formation of these compounds during the neutralisation process is dependent on the concentration of residual lime, pH and aluminate concentrations in the residue slurry. Therefore, the effect of calcium hydroxide (CaOH2) in bauxite refinery liquors was analysed and the degree of reversion monitored. This investigation found that the dissolution of tricalcium aluminate, hydrocalumite and CaOH2 caused reversion and continued to increase the pH of the neutralised residue until a state of equilibrium was reached at a solution pH of 10.5. The dissolution mechanism for each compound has been described and used to demonstrate the implications that this has on reversion in seawater neutralised Bayer liquor. This investigation describes the limiting factors for the dissolution and formation of these trigger compounds as well as confirming the formation of Bayer hydrotalcite (mixture of Mg6Al2(OH)16(CO32-,SO42-)•xH2O and Mg8Al2(OH)12(CO32-,SO42-)•xH2O) as the primary mechanism for reducing reversion during the neutralisation process. This knowledge then allowed for a simple but effective method (addition of magnesium chloride or increased seawater to Bayer liquor ratio) to be devised to reduce reversion occurring after the neutralisation of Bayer liquors. Both methods utilise the formation of Bayer hydrotalcite to permanently (stable in neutralised residue) remove hydroxyl (OH-) and aluminate (Al(OH)4-) ions from solution.
Resumo:
We have previously reported that concanavalin A (ConA)-induced MMP-2 activation involves both transcriptional and non-transcriptional mechanisms. Here we examined the effects of calcium influx on MT1-MMP expression and MMP-2 activation in MDA-MB-231 cells. The calcium ionophore ionomycin caused a dose-dependent inhibition of ConA-induced MMP-2 activation, but had no effect on MT1-MMP mRNA levels. However, Western analysis revealed an accumulation of pro-MT1-MMP (63 kDa), indicating that ionomycin blocked the conversion of pro-MT1-MMP protein to the active 60 kDa form. This suggests that increased calcium levels inhibit the processing of MT1-MMP. This finding may help to elucidate the mechanism(s) which regulates MT1-MMP activation.
Resumo:
Methyl orange (MO) is a kind of anionic dye and widely used in industry. In this study, tricalcium aluminate hydrates (Ca-Al-LDHs) are used as an adsorbent to remove methyl orange (MO) from aqueous solutions. The resulting products were studied by X-ray diffraction (XRD), infrared spectroscopy (MIR), thermal analysis (TG-DTA) and scanning electron microscope (SEM). The XRD results indicated that the MO molecules were successfully intercalated into the tricalcium aluminate hydrates, with the basal spacing of Ca-Al-LDH expanding to 2.48 nm. The MIR spectrum for CaAl-MO-LDH shows obvious bands assigned to the N@N, N@H stretching vibrations and S@O, SO_ 3 group respectively, which are considered as marks to assess MO_ ion intercalation into the interlayers of LDH. The overall morphology of CaAl-MOLDH displayed a ‘‘honey-comb’’ like structure, with the adjacent layers expanded.
Resumo:
A comprehensive study was undertaken involving chemical (inorganic and organic) and bioanalytical (a suite of 14 in vitro bioassays) assessments of coal seam gas (coal bed methane) associated water (CSGW) in Queensland, Australia. CSGW is a by-product of the gas extraction process and is generally considered as water of poor quality. This was done to better understand what is known about the potential biological and environmental effects associated with the organic constituents of CSGW in Australia. In Queensland, large amounts of associated water must be withdrawn from coal seams to allow extraction of the gas. CSGW is disposed of via release to surface water, reinjected to groundwater or reused for irrigation of crops or pasture, supplied for power station cooling and or reinjected specifically to augment drinking water aquifers. Groundwater samples were collected from private wells tapping into the Walloon Coal Measures, the same coal aquifer exploited for coal seam gas production in the Surat Basin, Australia. The inorganic characteristics of these water samples were almost identical to the CSGW entering the nearby gas company operated Talinga-Condabri Water Treatment Facility. The water is brackish with a pH of 8 to 9, high sodium, bicarbonate and chloride concentrations but low calcium, magnesium and negligible sulphate concentrations. Only low levels of polyaromatic hydrocarbons (PAHs) were detected in the water samples, and neither phenols nor volatile organic compounds were found. Results from the bioassays showed no genotoxicity, protein damage, or activation of hormone receptors (with the exception of the estrogen receptor). However, five of the 14 bioassays gave positive responses: an arylhydrocarbon-receptor gene activation assay (AhR-CAFLUX), estrogenic endocrine activity (ERα-CALUX), oxidative stress response (AREc32), interference with cytokine production (THP1-CPA) and non-specific toxicity (Microtox). The observed effects were benchmarked against known water sources and were similar to secondary treated wastewater effluent, stormwater and surface water. As mixture toxicity modelling demonstrated, the detected PAHs explained less than 5% of the observed biological effects.
Resumo:
A plasma-assisted concurrent Rf sputtering technique for fabrication of biocompatible, functionally graded CaP-based interlayer on Ti-6Al-4V orthopedic alloy is reported. Each layer in the coating is designed to meet a specific functionality. The adherent to the metal layer features elevated content of Ti and supports excellent ceramic-metal interfacial stability. The middle layer features nanocrystalline structure and mimics natural bone apatites. The technique allows one to reproduce Ca/P ratios intrinsic to major natural calcium phosphates. Surface morphology of the outer, a few to few tens of nanometers thick, layer, has been tailored to fit the requirements for the bio-molecule/protein attachment factors. Various material and surface characterization techniques confirm that the optimal surface morphology of the outer layer is achieved for the process conditions yielding nanocrystalline structure of the middle layer. Preliminary cell culturing tests confirm the link between the tailored nano-scale surface morphology, parameters of the middle nanostructured layer, and overall biocompatibility of the coating.
Resumo:
Optical emission of reactive plasma species during the synthesis of functionally graded calcium phosphate-based bioactive films has been investigated. The coatings have been deposited on Ti-6Al-4V orthopedic alloy by co-sputtering of hydroxyapatite (HA) and titanium targets in reactive plasmas of Ar + H2O gas mixtures. The species, responsible for the Ca-P-Ti film growth have been non-intrusively monitored in situ by a high-resolution optical emission spectroscopy (OES). It is revealed that the optical emission originating from CaO species dominates throughout the deposition process. The intensities of CaO, PO and CaPO species are strongly affected by variations of the operating pressure, applied RF power, and DC substrate bias. The optical emission intensity (OEI) of reaction species can efficiently be controlled by addition of H2O reactant.
Resumo:
GABAB receptors regulate the intracellular Ca2+ concentration ([Ca2+]i) in a number of cells (e.g., retina, airway epithelium and smooth muscle), but whether they are expressed in vascular endothelial cells and similarly regulate the [Ca2+]i is not known. The purpose of this study was to investigate the expression of GABAB receptors, a subclass of receptors to the inhibitory neurotransmitter γ-aminobutyric acid (GABA), in cultured human aortic endothelial cells (HAECs), and to explore if altering receptor activation modified [Ca2+]i and endothelial nitric oxide synthase (eNOS) translocation. Real-time PCR, western blots and immunofluorescence were used to determine the expression of GABAB1 and GABAB2 in cultured HAECs. The effects of GABAB receptors on [Ca2+]i in cultured HAECs were demonstrated using fluo-3. The influence of GABAB receptors on eNOS translocation was assessed by immunocytochemistry. Both GABAB1 and GABAB2 mRNA and protein were expressed in cultured HAECs, and the GABAB1 and GABAB2 proteins were colocated in the cell membrane and cytoplasm. One hundred μM baclofen caused a transient increase of [Ca2+]i and eNOS translocation in cultured HAECs, and the effects were attenuated by pretreatment with the selective GABAB receptor antagonists CGP46381 and CGP55845. GABAB receptors are expressed in HAECs and regulate the [Ca2+]i and eNOS translocation. Cultures of HAECs may be a useful in vitro model for the study of GABAB receptors and vascular biology.
Resumo:
We propose and mathematically examine a theory of calcium profile formation in unwounded mammalian epidermis based on: changes in keratinocyte proliferation, fluid and calcium exchange with the extracellular fluid during these cells' passage through the epidermal sublayers, and the barrier functions of both the stratum corneum and tight junctions localised in the stratum granulosum. Using this theory, we develop a mathematical model that predicts epidermal sublayer transit times, partitioning of the epidermal calcium gradient between intracellular and extracellular domains, and the permeability of the tight junction barrier to calcium ions. Comparison of our model's predictions of epidermal transit times with experimental data indicates that keratinocytes lose at least 87% of their volume during their disintegration to become corneocytes. Intracellular calcium is suggested as the main contributor to the epidermal calcium gradient, with its distribution actively regulated by a phenotypic switch in calcium exchange between keratinocytes and extracellular fluid present at the boundary between the stratum spinosum and the stratum granulosum. Formation of the extracellular calcium distribution, which rises in concentration through the stratum granulosum towards the skin surface, is attributed to a tight junction barrier in this sublayer possessing permeability to calcium ions that is less than 15 nm/s in human epidermis and less than 37 nm/s in murine epidermis. Future experimental work may refine the presented theory and reduce the mathematical uncertainty present in the model predictions.
Resumo:
This project investigated the calcium distributions of the skin, and the growth patterns of skin substitutes grown in the laboratory, using mathematical models. The research found that the calcium distribution in the upper layer of the skin is controlled by three different mechanisms, not one as previously thought. The research also suggests that tight junctions, which are adhesions between neighbouring skin cells, cannot be solely responsible for the differences in the growth patterns of skin substitutes and normal skin.
Resumo:
This study evaluated the complexity of calcium ion exchange with sodium exchanged weak acid cation resin (DOW MAC-3). Exchange equilibria recorded for a range of different solution normalities revealed profiles which were represented by conventional “L” or “H” type isotherms at low values of equilibrium concentration (Ce) of calcium ions, plus a superimposed region of increasing calcium uptake was observed at high Ce values. The loading of calcium ions was determined to be ca. 53.5 to 58.7 g/kg of resin when modelling only the sorption curve created at low Ce values,which exhibited a well-defined plateau. The calculated calcium ion loading capacity for DOWMAC-3 resin appeared to correlate with the manufacturer's recommendation. The phenomenon of super equivalent ion exchange (SEIX) was observed when the “driving force” for the exchange process was increased in excess of 2.25 mmol calcium ions per gram of resin in the starting solution. This latter event was explained in terms of displacement of sodium ions from sodium hydroxide solution which remained in the resin bead following the initial conversion of the as supplied “H+” exchanged resin sites to the “Na+” version required for softening studies. Evidence for hydrolysis of a small fraction of the sites on the sodium exchanged resin surface was noted. The importance of carefully choosing experimental parameters was discussed especially in relation to application of the Langmuir–Vageler expression. This latter model which compared the ratio of the initial calcium ion concentration in solution to resin mass, versus final equilibrium loading of the calcium ions on the resin; was discovered to be an excellent means of identifying the progress of the calcium–sodium ion exchange process. Moreover, the Langmuir–Vageler model facilitated standardization of various calcium–sodium ion exchange experiments which allowed systematic experimental design.
Resumo:
The mineral coquimbite has been analysed using a range of techniques including SEM with EDX, thermal analytical techniques and Raman and infrared spectroscopy. The mineral originated from the Javier Ortega mine, Lucanas Province, Peru. The chemical formula was determined as ðFe3þ 1:37; Al0:63ÞP2:00ðSO4Þ3 9H2O. Thermal analysis showed a total mass loss of 73.4% on heating to 1000 C. A mass loss of 30.43% at 641.4 C is attributed to the loss of SO3. Observed Raman and infrared bands were assigned to the stretching and bending vibrations of sulphate tetrahedra, aluminium oxide/hydroxide octahedra, water molecules and hydroxyl ions. The Raman spectrum shows well resolved bands at 2994, 3176, 3327, 3422 and 3580 cm 1 attributed to water stretching vibrations. Vibrational spectroscopy combined with thermal analysis provides insight into the structure of coquimbite.
Resumo:
Burkeite formation is important in saline evaporites and in pipe scales. Burkeite is an anhydrous sulphate-carbonate with an apparent variable anion ratio. Such a formula with two oxyanions lends itself to vibrational spectroscopy. Two symmetric sulphate stretching modes are observed, indicating at least at the molecular level the nonequivalence of the sulphate ions in the burkeite structure. The strong Raman band at 1065 cm−1 is assigned to the carbonate symmetric stretching vibration. The series of Raman bands at 622, 635, 645, and 704 cm−1 are assigned to the ν4 sulphate bending modes. The observation of multiple bands supports the concept of a reduction in symmetry of the sulphate anion from T d to C 3v or even C 2v.
Resumo:
Dehydroepiandrosterone (DHEA) and its sulphate form (DHEA) are neuroactive steroids with antiglucocorticoid properties. An imbalance in the ratio of cortisol to DHEA(S) has been implicated in the pathophysiology of stress-related psychiatric disorders. This study prospectively investigated circulating cortisol, DHEAS and their ratio in first-episode psychosis (FEP) patients compared to healthy controls, and their relationship to perceived stress, psychotic, negative and mood symptoms. METHODS: Blood cortisol and DHEAS levels were obtained in 39 neuroleptic-naïve or minimally-treated FEP patients and 25 controls. Twenty-three patients and 15 controls received repeat assessments after 12 weeks. Perceived stress was assessed using the Perceived Stress Scale and symptoms were assessed in patients using standard rating scales. RESULTS: At baseline, no differences were observed in cortisol, DHEAS or the cortisol/DHEAS ratio between patients and controls. There were also no group differences in the change in these biological variables during the study period. Within FEP patients, decreases in cortisol and the cortisol/DHEAS ratio over time were directly related to the improvement in depression (r = 0.45; p = 0.031, r = 0.52; p = 0.01), negative (r = 0.51; p = 0.006, r = 0.55; p = 0.008) and psychotic symptoms (cortisol only, r = 0.53; p = 0.01). Perceived stress significantly correlated with DHEAS (r = 0.51; p = 0.019) and the cortisol/DHEAS ratio (r = -0.49; p = 0.024) in controls, but not patients, possibly reflecting an impaired hormonal response to stress in FEP patients. CONCLUSIONS: These findings further support the involvement of the stress system in the pathophysiology of psychotic disorders, with implications for treatment strategies that modulate these neurosteroids.